Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New genomics tool boosts diabetes research


Researchers have developed a method for scanning the entire human genome to successfully map the location of key gene regulators, mutated forms of which are known to cause type 2 diabetes. The research marks the first time that human organs, in this case the pancreas and liver, have been analyzed in this way and opens the door to similar studies of other organ systems and diseases.

The work, published in the Feb. 27 issue of the journal Science, could lead to new approaches for developing medications and assessing a person’s genetic risk to this and other conditions, says Richard Young, a scientist at Whitehead Institute for Biomedical Research and lead researcher on the project.

Key to understanding the relationship between genes and disease are gene regulators called transcription factors, proteins that bind to specific areas of the genome and act to switch genes on and off. To discover how a specific transcription factor might contribute to a particular disease, scientists must locate each point in the genome where the transcription factor adheres and identify the individual genes it controls. Using conventional tools, it might take a single scientist a lifetime to do this for just one transcription factor. Yet humans have over 1,000 transcription factors and dozens of these have been linked to diseases.

"We developed an efficient gene-scanning technology so we could map genome binding sites for many transcription factors in a human organ," says Duncan Odom, a postdoctoral fellow at Whitehead Institute and lead author of the paper. "This allows us to identify the sets of genes where transcription factors act as switches and to learn how defects in these switches might cause disease".

In October 2002, a team led by Young, who also is a professor of biology at Massachusetts Institute of Technology, reported in Science on a technology used to identify how over 100 transcription factors were associated with the yeast genome, reducing the amount of time it would ordinarily take to do this from centuries to months. In this new study, Young’s team demonstrates that a modified version of this technology also can be used to scan human tissue.

The researchers applied this technology to several transcription factors that reside in the pancreas and liver and were known to be associated with type 2 diabetes, but just how they contributed to the disease was unknown. They discovered that one of the transcription factors, called HNF4, controls about half of all the genes needed to make the pancreas and liver. This suggests that without HNF4, these organs could not function normally, which is particularly relevant to diabetes because the pancreas produces insulin and loss of insulin production causes the disease.

HNF4 seems to contain many of the mutations that predispose a person to type 2 diabetes, the scientists say. "This new evidence explains why defects in the HNF4 transcription factor can lead to diabetes," says Young. "Even a small loss of HNF4 function could affect the health of the pancreas because this regulator is associated with so many important genes in this organ."

Now that we understand HNF4’s role, Young suggests researchers might be able to develop medications that modify the activities of mutated forms of HNF4, which could possibly prevent diabetes in some at-risk individuals. Also, these findings could enable scientists to create methods for analyzing an individual’s genetic profile to determine exactly that person’s risk level.

"This really changes your whole perspective," says Graeme Bell, professor of biochemistry and molecular biology at University of Chicago and co-author on the paper. "Before we were just looking at these conditions one gene at a time. Now we can see the whole playing field, and more importantly, we can see the players."

These findings go beyond diabetes and offer a whole new way of approaching research on many diseases, Young adds. "There are many human diseases associated with mutations in transcription factors, including cancer, hypertension and immunological and neurological disorders. Discovering how transcription factors regulate genes in various human organs should continue to provide clues to the causes of disease and offer new approaches for therapy."

Reporters may receive a copy of the journal article by contacting Science at

David Cameron | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>