Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover new family of Atlantic corals, upset prior coral classifications

26.02.2004


Provides new look at conservation of threatened coral species



An international research team has identified a family of corals found only in the Atlantic Ocean-a first for such classifications in that ocean-in a study that could transform how corals are viewed and classified. The scientists, who will publish their results in the Feb. 26 issue of the journal Nature, say the findings are also important for future decisions about coral conservation and the preservation of threatened biodiversity regions.

Led by Nancy Knowlton of the Scripps Institution of Oceanography of the University of California, San Diego, the study revealed significant flaws in the widely accepted taxonomy of Pacific and Atlantic corals. The team, which included researchers from the Smithsonian Tropical Research Institute in Panama, used DNA analysis to uncover a significant and previously undetected divergence between Pacific and Atlantic corals. Unexpectedly, the researchers found that about one-third of Atlantic corals, which had been conventionally classified in two distinct families found around the tropics, are in fact very closely related. But, the report says, the Atlantic corals are very different from Pacific corals assumed to be their close relatives. The two corals are so distinct, the scientists suggest the Atlantic variety constitutes its own family, making them the first such grouping unique to the Atlantic Ocean.


"If genetic sequencing of two families of corals can produce a major revision in our understanding," said H. Richard Lane, director of the National Science Foundation’s geology and paleontology program, which funded the research, "one can only imagine what kinds of changes will happen once sequencing is accomplished across the entire spectrum of the biotic world." NSF is an independent federal agency that supports fundamental research and education across all fields of science and engineering.

The DNA results contradict accepted classifications based on the evolutionary form and structure, or morphology, of corals. Calculating when the Atlantic lineage originated is difficult, the scientists say, because the results now call into question the identity of many fossilized corals. The best records indicate that the dominant Atlantic and Pacific lineages probably separated more than 34 million years ago. Indeed, the team’s further analysis of corals from the Caribbean, Brazil, Japan, Taiwan and Palau found entire lineages misclassified.

While the results carry implications beyond the upheaval and realignment of coral classification systems, the study also suggests current Atlantic coral conservation efforts should be reconsidered.

"Corals are important organisms because of the reefs they build, which support the most diverse marine ecosystems on the planet. But these new results are not simply that the coral taxonomy is completely wrong," said Knowlton, director of the Center for Marine Biodiversity and Conservation at Scripps. "These results require us to think about conservation priorities in a really different way."

Conservation priorities have been heavily focused on the Pacific Ocean because more coral species live there. Biodiversity "hot- spot" analyses, however, have ignored deeper-level diversity because Atlantic corals were assumed not to be particularly distinctive, say the scientists.


The Smithsonian Institution, the Scripps Institution of Oceanography, and the Conselho Nacional de Pesquisas also funded the research.

Cheryl Dybas | NSF
Further information:
http://www.nsf.gov
http://www.nsf.gov/home/news.html

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>