Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marsupial among model organisms next in line for sequencing

26.02.2004


NHGRI-supported centers also to target more insects, worms and fungi


NHGRI-supported researchers are sequencing the genome of this marsupial. Photo courtesy of Paul Samollow, Southwest Foundation for Biomedical Research, San Antonio.


NHGRI-supported researchers are sequencing the genome of this insect. Photo courtesy of Eric Day, Virginia Tech, Blacksburg, Va.



The Large-Scale Sequencing Research Network this year will begin sequencing the genomes of more than a dozen new model organisms, including the first marsupial to have its DNA deciphered. The research network, supported by the National Human Genome Research Institute (NHGRI), one of the National Institutes of Health (NIH), is part of an effort to further advance understanding of the human genome.

The efforts will be carried out by the five sequencing centers in the NHGRI-supported network: Agencourt Bioscience Corp., Beverly, Mass.; Baylor College of Medicine, Houston; The Eli & Edythe L. Broad Institute, Massachusetts Institute of Technology (MIT), Cambridge, Mass.; The Institute for Genomic Research (TIGR), J. Craig Venter Science Foundation Joint Technology Center, Rockville, Md.; and Washington University School of Medicine, St. Louis.


"Comparing the human genome sequence with those of other organisms allows us to identify regions of similarity and difference, providing critical clues about the structure and function of human genes," said NHGRI Director Francis S. Collins, M.D., Ph.D. "The ability to compare a wide range of genomes is the best tool currently available for understanding the underlying genomic components that affect human health and disease."

NHGRI’s Associate Director of Extramural Research Jane Peterson, Ph.D., added, "Building on the success of the Human Genome Project, we are carrying out a strategic plan to use large-scale sequencing to expand our knowledge of the human genome, as well as to gain new insights into the genomes of major biomedical model systems and to open new windows into evolutionary biology."

The first marsupial selected for sequencing is a gray short-tailed, South American opossum (Monodelphis domestica). The opossum’s position in the evolutionary tree provides a major reason to obtain its DNA sequence. Opossums and humans diverged from a common ancestor 130 million years ago, providing a unique midpoint on the evolutionary timeline for comparative studies involving other mammals, such as the mouse, which diverged from human 75 million years ago; and non-mammalian relatives, such as birds, which diverged from human 300 to 350 million years ago.

The elucidation of the genome sequence of Monodelphis domestica will also provide new insights into a broad range of topics that are relevant to human development, physiology and disease susceptibility. Marsupials are unique among mammals because their young are born at an extremely early stage of development, attach to their mother’s teats and complete their subsequent development while in a protective pouch. This makes the young readily available for early developmental research. In addition, there are other areas of biomedical research for which Monodelphis serves as a model. For example, it is the only laboratory animal known in which ultraviolet radiation alone can cause melanoma, a type of skin cancer that also strikes humans exposed to too much of the sun’s ultraviolet rays. Having the sequence of the opossum genome will give researchers the ability to learn more about the molecular basis of melanoma and its progression, as well as explore development of new therapies and preventive treatments.

In 2004, scientists at the Broad Institute will produce a draft sequence of the opossum genome and also begin working on the genomes of four fungi (Candida albicans, Candida tropicalis, Lodderomyces elongisporus, Saccharomyces cerevisiae RM11-1A). Some of the fungi are important because of their threat to human health, while others hold the potential to reveal basic biological processes that have been conserved through evolution. Currently, the Massachusetts sequencing center is nearing completion of a working draft assembly of the dog genome.

Baylor College of Medicine’s Human Genome Sequencing Center this year expects to begin sequencing the genome of the red flour beetle (Tribolium castaneum). Understanding the genome of the red flour beetle is expected to provide information to help control this insect that is a major pest in many stored grain and cereal products around the world. Additionally, Tribolium represents an important branch of the evolutionary tree and its sequence will help to shed light on changes that occurred in the evolution of insects. The Houston group also is presently working on assembling a draft of the purple sea urchin (Strongylocentrotus purpuratus) genome and continues to sequence the genomes of the cow (Bos taurus) and the rhesus macaque (Macaca mulatto), which is being done in collaboration with Washington University and TIGR.

In addition to sequencing species that are far apart on the evolutionary tree, it is important to sequence sets of species that are closely related. For example, comparative genomic analysis of six species of yeast has prompted scientists to significantly revise their initial catalog of yeast genes and to predict a new set of functional elements thought to play a role in regulating genome activity. Experiments to validate the existence of these and other predicted elements, and study their function within the cell, are expected to enhance understanding of how the human genome works.

During 2004, scientists at the Washington University School of Medicine will sequence the genomes of three species of roundworm (Caenorhabditis remanei, Caenorhabditis japonica, and CB5161-Caenorhabditis sp. 1), adding to the two species of roundworm that public sequencers have previously completed (Caenorhabditis elegans, Caenorhabditis briggsae). The St. Louis group is already assembling a working draft of the chicken genome, as well as sequencing the genomes of two species of fruitfly (Drosophila simulans, Drosophila yakuba) and the flatworm (Schmidtea mediterranea), a laboratory organism known for its ability to regenerate a complete individual from a severed body part.

TIGR plans to sequence the genome of a species of fruitfly (Drosophila willistoni) in 2004 and is currently collaborating with the Baylor group on the rhesus macaque sequencing project. Agencourt Bioscience will focus in 2004 on sequencing an additional five species of fruitfly (Drosophila ananassae, Drosophila erecta, Drosophila grimshawi, Drosophila mojavensis and Drosophila virilis).



To read the white papers describing the scientific rationales and strategies for sequencing the genomes of these and other model organisms in the NHGRI pipeline, go to: www.genome.gov/10002154. For more information on NHGRI’s selection and priority process for sequencing of model organisms, go to: www.genome.gov/Sequencing/OrganismSelection. For more on the rapidly growing field of comparative genomic analysis, go to: www.genome.gov/10005835.

The primary mission of the Large-Scale Sequencing Research Network is to produce a publicly available resource of high quality assembled genome sequences that researchers can use to address human biology and human health. For more information on the network, see http://www.genome.gov/11508922.

High-resolution photos of the red flour beetle and South American opossum are available at: http://www.genome.gov/10005141.

NHGRI is one of the 27 institutes and centers at NIH, an agency of the Department of Health and Human Services (DHHS). The NHGRI Division of Extramural Research supports grants for research and for training and career development at sites nationwide. Additional information about NHGRI can be found at its Web site, www.genome.gov.

Geoff Spencer | EurekAlert!
Further information:
http://www.genome.gov
http://www.genome.gov/10005141
http://www.genome.gov/11508922

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>