Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Embryonic pig cell transplants halt rat diabetes

26.02.2004


Procedure requires no immune suppression drugs



An experimental cross-species transplant to treat diabetes has passed an early test in rats with better-than-expected results, suggesting the innovative approach might halt type 1 diabetes while greatly reducing the risk of rejection.

Scientists at Washington University School of Medicine in St. Louis set up control and experimental groups of rats with diabetes. The experimental group received embryonic pig pancreas cell transplants and antirejection drugs to prevent the rats’ immune systems from destroying the transplants. The control group received only the transplants and no immune suppression drugs. To the researchers’ surprise, the control group’s transplants grew unmolested by the immune system, halting the rats’ diabetes and changing the focus of the study to transplanting without the need for immune suppression.


"Every once in a while you get lucky, and now we have the possibility of transplanting these pig cells and not having to worry about rejection," says Marc R. Hammerman, M.D., the Chromalloy Professor of Renal Diseases in medicine and leader of the study.

The results appear online and will be published in the April issue of The American Journal of Physiology-Endocrinology and Metabolism.

Hammerman, an endocrinologist and director of the Renal Division, is a leader in the emerging field of organogenesis, which is focused on growing organs from stem cells and other embryonic cell clusters known as organ primordia. Unlike stem cells, primordia cannot develop into any cell type -- they are locked into becoming a particular cell type or one of a particular set of cell types that make up an organ.

In multiple groups of diabetic rats that were unable to produce their own rat insulin, Hammerman and Sharon Rogers, research instructor in medicine, transplanted pig pancreas primordia into the omentum, a membrane that envelops the intestines and other digestive organs. Within two weeks, the primordia engrafted and began producing pig insulin.

The pig insulin replaced the missing rat insulin, returning the rats’ blood glucose to normal levels, an effect that continued for the rest of their lives. Failure to gain weight, another characteristic symptom of diabetes, was also reversed following the transplants.

In a final group of transplant recipients, Rogers, Hammerman, Feng Chen, Ph.D., assistant professor of medicine, and Mike Talcott, D.V.M., director of veterinary surgical services, showed that pig insulin-producing cells were present in the omentum and had caused a buildup of fat, a change previously linked to successful engraftment of pancreatic tissue.

Hammerman had theorized for years that implanting primordia obtained very soon after organ formation and coaxing the cells into growing into fully functioning organs inside a transplant recipient might reduce immune system rejection. However, he admits he is stunned by the new success.

"Conditions that are permissive for transplantation from one species to another frequently don’t translate to transplants into another species," Hammerman says. "But this dramatic elimination of the need for immune suppression is quite unusual; there’s not a lot of precedent in the literature for it. So it’s possible that it may also apply in other cross-species transplants and maybe even in pig-to-human transplants."

Diabetes in humans is sometimes treated by transplanting human insulin-producing pancreas cells known as the islets of Langerhans. According to Hammerman, using embryonic pig cells as the transplant source instead of human islets circumvents three major difficulties.

"First, there aren’t nearly enough human pancreas organs to go around," Hammerman says. "Since pig insulin works fine in humans, if pigs could be used as donors the shortage would be alleviated."

Second, islets can only be extracted from the pancreas by mincing the organ and exposing it to enzymes that break down connective tissue.

"This damages islets," Hammerman says. "So not all of the transplanted islets engraft, and many that do engraft die after a period of time."

Third, islets are composed of mature cells unable to respond to increased need for their services by dividing and producing more cells. In contrast, embryonic pancreas cells divide readily in response to such needs, resulting in a potentially expandable source of insulin.

For reasons not yet understood, the transplanted pancreas cells did not develop an additional digestive function normally associated with the pancreas.

"That was another remarkably lucky break," Hammerman notes, "because only the endocrine cells are required to treat diabetes. The digestive cells would have only caused problems."

If elimination or reduction of immune rejection transfers to pig-to-human transplants, the technique will defeat or greatly diminish a final formidable obstacle to treating diabetes with transplants.

"Immunosuppressing a patient introduces a whole new set of dangers and side effects," says Hammerman. "Patients with type 1 diabetes have to ask themselves, would I rather take insulin, or would I rather take all these immunosuppressive drugs? It’s not the greatest choice in the world."

The next phase of research will involve pig-to-primate transplants. If those are successful, then pig-to-human transplant trials can be considered.

Hammerman also is studying the use of kidney primordia from embryonic pigs to grow new kidneys inside recipients as a treatment for end-stage kidney failure.


Rogers SA, Chen F, Talcott M, Hammerman MR. Islet cell engraftment and control of diabetes in rats after transplantation of pig pancreatic anlagen. American Journal of Physiology-Endocrinology and Metabolism, April 2004.

Funding from the National Institutes of Diabetes and Digestive and Kidney Diseases supported this research.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>