Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Embryonic pig cell transplants halt rat diabetes


Procedure requires no immune suppression drugs

An experimental cross-species transplant to treat diabetes has passed an early test in rats with better-than-expected results, suggesting the innovative approach might halt type 1 diabetes while greatly reducing the risk of rejection.

Scientists at Washington University School of Medicine in St. Louis set up control and experimental groups of rats with diabetes. The experimental group received embryonic pig pancreas cell transplants and antirejection drugs to prevent the rats’ immune systems from destroying the transplants. The control group received only the transplants and no immune suppression drugs. To the researchers’ surprise, the control group’s transplants grew unmolested by the immune system, halting the rats’ diabetes and changing the focus of the study to transplanting without the need for immune suppression.

"Every once in a while you get lucky, and now we have the possibility of transplanting these pig cells and not having to worry about rejection," says Marc R. Hammerman, M.D., the Chromalloy Professor of Renal Diseases in medicine and leader of the study.

The results appear online and will be published in the April issue of The American Journal of Physiology-Endocrinology and Metabolism.

Hammerman, an endocrinologist and director of the Renal Division, is a leader in the emerging field of organogenesis, which is focused on growing organs from stem cells and other embryonic cell clusters known as organ primordia. Unlike stem cells, primordia cannot develop into any cell type -- they are locked into becoming a particular cell type or one of a particular set of cell types that make up an organ.

In multiple groups of diabetic rats that were unable to produce their own rat insulin, Hammerman and Sharon Rogers, research instructor in medicine, transplanted pig pancreas primordia into the omentum, a membrane that envelops the intestines and other digestive organs. Within two weeks, the primordia engrafted and began producing pig insulin.

The pig insulin replaced the missing rat insulin, returning the rats’ blood glucose to normal levels, an effect that continued for the rest of their lives. Failure to gain weight, another characteristic symptom of diabetes, was also reversed following the transplants.

In a final group of transplant recipients, Rogers, Hammerman, Feng Chen, Ph.D., assistant professor of medicine, and Mike Talcott, D.V.M., director of veterinary surgical services, showed that pig insulin-producing cells were present in the omentum and had caused a buildup of fat, a change previously linked to successful engraftment of pancreatic tissue.

Hammerman had theorized for years that implanting primordia obtained very soon after organ formation and coaxing the cells into growing into fully functioning organs inside a transplant recipient might reduce immune system rejection. However, he admits he is stunned by the new success.

"Conditions that are permissive for transplantation from one species to another frequently don’t translate to transplants into another species," Hammerman says. "But this dramatic elimination of the need for immune suppression is quite unusual; there’s not a lot of precedent in the literature for it. So it’s possible that it may also apply in other cross-species transplants and maybe even in pig-to-human transplants."

Diabetes in humans is sometimes treated by transplanting human insulin-producing pancreas cells known as the islets of Langerhans. According to Hammerman, using embryonic pig cells as the transplant source instead of human islets circumvents three major difficulties.

"First, there aren’t nearly enough human pancreas organs to go around," Hammerman says. "Since pig insulin works fine in humans, if pigs could be used as donors the shortage would be alleviated."

Second, islets can only be extracted from the pancreas by mincing the organ and exposing it to enzymes that break down connective tissue.

"This damages islets," Hammerman says. "So not all of the transplanted islets engraft, and many that do engraft die after a period of time."

Third, islets are composed of mature cells unable to respond to increased need for their services by dividing and producing more cells. In contrast, embryonic pancreas cells divide readily in response to such needs, resulting in a potentially expandable source of insulin.

For reasons not yet understood, the transplanted pancreas cells did not develop an additional digestive function normally associated with the pancreas.

"That was another remarkably lucky break," Hammerman notes, "because only the endocrine cells are required to treat diabetes. The digestive cells would have only caused problems."

If elimination or reduction of immune rejection transfers to pig-to-human transplants, the technique will defeat or greatly diminish a final formidable obstacle to treating diabetes with transplants.

"Immunosuppressing a patient introduces a whole new set of dangers and side effects," says Hammerman. "Patients with type 1 diabetes have to ask themselves, would I rather take insulin, or would I rather take all these immunosuppressive drugs? It’s not the greatest choice in the world."

The next phase of research will involve pig-to-primate transplants. If those are successful, then pig-to-human transplant trials can be considered.

Hammerman also is studying the use of kidney primordia from embryonic pigs to grow new kidneys inside recipients as a treatment for end-stage kidney failure.

Rogers SA, Chen F, Talcott M, Hammerman MR. Islet cell engraftment and control of diabetes in rats after transplantation of pig pancreatic anlagen. American Journal of Physiology-Endocrinology and Metabolism, April 2004.

Funding from the National Institutes of Diabetes and Digestive and Kidney Diseases supported this research.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>