Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer method identifies potentially active enzymes

24.02.2004


Better drugs, improved industrial applications and even cleaner laundry may be possible with a new computer method to predict which hybrid enzymes are likely to have high activity, according to a team of Penn State chemists and chemical engineers.



"FamClash is quite successful at qualitatively predicting the pattern of the specific activity of the hybrids," the researchers report in this week’s online issue of the Proceedings of the National Academy of Sciences. "By identifying incompatible residue pairs in the hybrids, this method provides valuable insights for protein engineering interventions to remedy these clashes," the researchers say. FamClash is a computer method used to predict which hybrid enzymes are likely to have activity and which are not. Hybrid enzymes form when researchers combine similar enzymes from two or more different organisms. The variant enzymes are broken and recombined with parts from the original enzymes creating the new one.

"We have worked out ways to make libraries of novel enzymes by splicing proteins together," says Alexander R. Horswill, postdoctoral fellow in chemistry. "We wanted to know how active the new enzymes would be compared to the wild type."


Industrial processes use enzymes when reactions are too slow or too expensive to carry out without a catalytic boost. The most familiar use of enzymes is in laundry detergents where dirt-removing enzymes can gobble up stains even in cold water.

" It is hard to create an enzyme that is better than what occurs in nature," says Horswill. "But the FamClash approach will aid in engineering enzymes to work better in unnatural conditions, such as low or high temperatures, basic or acidic environments or organic solvents."

Horswill and Stephen J. Benkovic, the University professor, the Evan Pugh Professor of Chemistry and holder of the Eberly Chair in Chemistry, used enzymes from Escherichia coli and Bacillus subtilis, two common bacteria. Both produce forms of dihydrofolate reductases or DHFR that are 44 percent identical at the protein level. ITCHY or incremental truncation for the creation of hybrid enzymes was used to splice these DHFR enzymes together. Libraries of new and potentially interesting enzymes were created, but these new proteins do not necessarily have any enzymatic activity and therefore many of them were tested in the laboratory for activity. Working on the computer, rather than in the laboratory, Manish C. Saraf, graduate student in chemical engineering and Costas D. Maranas, associate professor of chemical engineering developed FamClash to understand and predict which combinations of pieces from the original enzymes would cause clashes and diminish activity and which will form active hybrid enzymes.

"First we have the computer program generate all the hybrids that could form using ITCHY," says Saraf. "Then we look at every residue combination in each hybrid for pair clashes."

To function properly, protein strands need to fold in a specific way so that certain domains are next to or aligned with other domains. Both forms of enzymes studies here have similar structure and function, however, clashes occur in hybrids when they retain fragments from original enzymes that are not compatible with each other.

"Pairs of residues that are too big, or too small, or have the wrong electrical charge can cause these clashes that prevent these hybrids from folding correctly," says Saraf. "We hypothesize that the greater the number of clashes that exist in the hybrids, the less likely it is to fold correctly and therefore lower activity will be present."

The hybrid combinations are then ranked for predicted enzyme activity based on the number of clashes present. "It is very helpful to experimentalists to know where introduced crossovers will produce high activity," says Horswill. "The long-term goal is to engineer enzymes for specific functions."

This engineering might come about by altering the residues so that clashes no longer exist. At this point, the researchers consider all clashes equal in reducing activity, but this is not necessarily true. Some clashes may be much more damaging than others.

"Now we assume that more clashes are worse, but we do not really know that," says Saraf. "We want to see what happens if we eliminate all clashes. Will it have equal activity? We are hoping that will tell us which predictions are right and which are wrong. "

The researchers have also tried the approach on other enzyme systems and observed similar trends in prediction.


The National Science Foundation and the National Institutes of Health supported this research.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>