Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USC researchers produce a hairier mouse

24.02.2004


Transgenic mouse shows other intriguing physiological changes



A transgenic mouse designed to grow more hair than other mice has provided University of Southern California researchers with some surprising results-and insight into the development and regulation of growth in epithelial organs that extend beyond skin and hair.

In an upcoming paper in the American Journal of Pathology—now available online—Cheng-Ming Chuong, M.D., Ph.D., professor of pathology at the Keck School of Medicine of USC, and his colleagues describe the creation of a mouse in which a particular gene-called noggin-is overexpressed in the skin. (Noggin works by suppressing the action of a protein called bone morphogenic protein, or BMP, which has a key role in a number of developmental pathways in mice and humans alike.)


Because of the role that noggin appears to play in the development of integument (skin and associated features), Chuong and his Keck School colleagues expected to see an increase in the number of hair follicles in the skin of the genetically modified mouse. And that is, indeed, what they saw. Not only was the fur of these mice thicker, with hair follicle density increasing by as much as 80 percent in the transgenic mice, but the transgenic mice also grew more whiskers than normal mice, with several whiskers sprouting from each follicle.

That, however, was only the beginning. The overexpression of the noggin gene also led to some unusual and unexpected changes in the mice. For instance, the meibomian glands in the eyes of the transgenic mice were transformed into follicles with small hairs "pointing inwards toward the cornea," Chuong explains. (Meibomian glands are the oil-producing glands that lubricate the eyelids in humans as well as mice; an infection in the meibomian gland is what we call a stye.)

As if hairy eyes weren’t enough, the sweat glands on the footpads of the mice’s paws turned into hair-sprouting follicles as well. And some of them sported misshapen claws, or were missing claws altogether.

Then, while doing physical exams on the mice, Maksim Plikus, a graduate student in Chuong’s lab, noticed one more unusual change in the transgenic mice: Their external genitalia were significantly larger than those of normal mice. "We now think that noggin plays a role in regulating the size of penile and clitoral tissues in mice, and that it can disrupt the balanced growth of these structures and result in their overgrowth," Chuong explains.

The changes in the genitalia aren’t limited to size, however. Whereas the surface of the normal mouse penis has well-differentiated microappendages called "hairy spines," the transgenic mouse’s penis is smoother, less bumpy. "We don’t know whether this affects sensation," says Chuong. "But we do know that they have the ability to reproduce."

The researchers also considered whether or not these changes are physical variations or actual pathologies-disease states brought on by the genetic tinkering done on these mice. "Some of the features, like the complete loss of claws or hair growth in the eyelids, are definitely pathological," Chuong admits. "But some of the others, like the increase in size in the genitalia or the increased thickness of the fur, may be variations that might not be negative, particularly when the environment changes. For instance, too many hairs on a human would be considered abnormal. But when it occurred in the mammoth thirty thousand years ago, it was considered an advantage."

"This makes one ponder the border between normal and abnormal," Chuong adds.

Aside from providing a fascinating look at how the unexpected plays out in science, this transgenic mouse will have more concrete applications, says Chuong. "In the era of tissue engineering," he and his colleagues write in their paper, "one may want to modulate the number, size or the differentiation status of some ectodermal organs in humans or animals for various medical, agricultural and industrial reasons. The newly made transgenic mouse can be a useful animal model and tissue source for these analyses and evaluations."


Maksim Plikus, Wen Pin Wang, Jian Liu, Xia Wang, Ting-Xin Jiang, and Cheng-Ming Chuong, "Morpho-Regulation of Ectodermal Organs: Integument Pathology and Phenotypic Variations in K14-Noggin Engineered Mice through Modulation of Bone Morphogenic Protein Pathway." American Journal of Pathology, 2004 164: 1099-1114.

http://ajp.amjpathol.org/content/vol164/issue3/#ANIMAL_MODELS

Jon Weiner | EurekAlert!
Further information:
http://www.usc.edu/
http://ajp.amjpathol.org/content/vol164/issue3/#ANIMAL_MODELS

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>