Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USC researchers produce a hairier mouse

24.02.2004


Transgenic mouse shows other intriguing physiological changes



A transgenic mouse designed to grow more hair than other mice has provided University of Southern California researchers with some surprising results-and insight into the development and regulation of growth in epithelial organs that extend beyond skin and hair.

In an upcoming paper in the American Journal of Pathology—now available online—Cheng-Ming Chuong, M.D., Ph.D., professor of pathology at the Keck School of Medicine of USC, and his colleagues describe the creation of a mouse in which a particular gene-called noggin-is overexpressed in the skin. (Noggin works by suppressing the action of a protein called bone morphogenic protein, or BMP, which has a key role in a number of developmental pathways in mice and humans alike.)


Because of the role that noggin appears to play in the development of integument (skin and associated features), Chuong and his Keck School colleagues expected to see an increase in the number of hair follicles in the skin of the genetically modified mouse. And that is, indeed, what they saw. Not only was the fur of these mice thicker, with hair follicle density increasing by as much as 80 percent in the transgenic mice, but the transgenic mice also grew more whiskers than normal mice, with several whiskers sprouting from each follicle.

That, however, was only the beginning. The overexpression of the noggin gene also led to some unusual and unexpected changes in the mice. For instance, the meibomian glands in the eyes of the transgenic mice were transformed into follicles with small hairs "pointing inwards toward the cornea," Chuong explains. (Meibomian glands are the oil-producing glands that lubricate the eyelids in humans as well as mice; an infection in the meibomian gland is what we call a stye.)

As if hairy eyes weren’t enough, the sweat glands on the footpads of the mice’s paws turned into hair-sprouting follicles as well. And some of them sported misshapen claws, or were missing claws altogether.

Then, while doing physical exams on the mice, Maksim Plikus, a graduate student in Chuong’s lab, noticed one more unusual change in the transgenic mice: Their external genitalia were significantly larger than those of normal mice. "We now think that noggin plays a role in regulating the size of penile and clitoral tissues in mice, and that it can disrupt the balanced growth of these structures and result in their overgrowth," Chuong explains.

The changes in the genitalia aren’t limited to size, however. Whereas the surface of the normal mouse penis has well-differentiated microappendages called "hairy spines," the transgenic mouse’s penis is smoother, less bumpy. "We don’t know whether this affects sensation," says Chuong. "But we do know that they have the ability to reproduce."

The researchers also considered whether or not these changes are physical variations or actual pathologies-disease states brought on by the genetic tinkering done on these mice. "Some of the features, like the complete loss of claws or hair growth in the eyelids, are definitely pathological," Chuong admits. "But some of the others, like the increase in size in the genitalia or the increased thickness of the fur, may be variations that might not be negative, particularly when the environment changes. For instance, too many hairs on a human would be considered abnormal. But when it occurred in the mammoth thirty thousand years ago, it was considered an advantage."

"This makes one ponder the border between normal and abnormal," Chuong adds.

Aside from providing a fascinating look at how the unexpected plays out in science, this transgenic mouse will have more concrete applications, says Chuong. "In the era of tissue engineering," he and his colleagues write in their paper, "one may want to modulate the number, size or the differentiation status of some ectodermal organs in humans or animals for various medical, agricultural and industrial reasons. The newly made transgenic mouse can be a useful animal model and tissue source for these analyses and evaluations."


Maksim Plikus, Wen Pin Wang, Jian Liu, Xia Wang, Ting-Xin Jiang, and Cheng-Ming Chuong, "Morpho-Regulation of Ectodermal Organs: Integument Pathology and Phenotypic Variations in K14-Noggin Engineered Mice through Modulation of Bone Morphogenic Protein Pathway." American Journal of Pathology, 2004 164: 1099-1114.

http://ajp.amjpathol.org/content/vol164/issue3/#ANIMAL_MODELS

Jon Weiner | EurekAlert!
Further information:
http://www.usc.edu/
http://ajp.amjpathol.org/content/vol164/issue3/#ANIMAL_MODELS

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>