Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing magnetic fields

23.02.2004


It has long been known that migratory birds can make use of the earth’s magnetic fields to navigate. Birds read the angle that magnetic fields create on the ground and thereby determine how far north or south they are of the magnetic equator and the magnetic pole. But how do they do this? Is there some unknown “magnetic sense”? It seems that birds can actually see magnetic fields-providing the lighting conditions are right. Experiments on redbreasts carried out by a zoo-ecologist at Lund University in Sweden have shown at what light frequencies magnetic force lines appear.



In the early 1990s German scientists demonstrated that in green light birds could find their expected migratory route in relation to the magnetic field. But if the light was yellow or red instead, the birds went astray, taking off in random directions. These German researchers used light-emitting diodes. Rachel Muheim, at the Department of Ecology at Lund, has performed similar experiments but using fiber optics and filters, which yields a narrower and more controlled spectrum.
The classic experimental set-up for such experiments is a funnel-shaped cage where the birds cannot see the sky-birds also use the sun and stars for navigation purposes. Electronic sensors or colors on the walls reveal what route they would like to follow to get out of the cage. Rachel Muheim studied how redbreasts behaved in this situation when they were exposed to green, yellow-green, and red light.

“The birds could navigate in the right direction in low-intensity green light but not in yellow-green light. The frequency difference between green and yellow-green light is very small, which shows how sensitive these perceptions are,” says Rachel Muheim, and continues:



“In low-intensity red light there was a consistent deviation of roughly 60 degrees from the route. We think some of the photo receptors in the eye of the bird are sensitive to magnetism in the green sector of the spectrum. Other photo receptors in the red sector make the bird turn away from the migratory path. When both types of receptors are activated-for instance in yellow-green light-the redbreasts become disoriented.

“Redbreasts migrate during the night. At sunset, when the journey starts, there is low-intensity blue-green light in the parts of the sky that are furthest away from the sun.”

In 1999 Rachel Muheim took part in the Swedish Polar Research Secretariat’s expedition Tundra Northwest in the arctic area of Canada. Her dissertation also presents a study of how two species of North American sparrows behave near the magnetic North Pole. There the magnetic field lines are vertical, and the birds lose their orientation. But when the birds were transported eastward even a tiny degree differential in how the magnet field lines hit the surface of the earth could help the birds navigate. Rachel Muheim and her collaborators found that a differential of as little as 1.3 degrees was sufficient-that’s how sensitive the birds’ magnetic compass is.

Göran Frankel | alfa
Further information:
http://www.lu.se/info/pm/667_pressm.html

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>