Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biochemical clues to long lifespan revealed

20.02.2004


Findings extend longevity research from yeast and worms to mammals



Researchers at Children’s Hospital Boston have discovered how two key cellular influences on lifespan work together, providing insights that may help reveal aging mechanisms in humans. The findings extend longevity research from yeast and worms into mammals, and suggest that longer life results, at least in part, from biochemical interactions that boost cells’ ability to resist environmental stresses while inhibiting them from committing suicide. The study appears in the February 19th Science Express, the online edition of the journal Science.

Previous studies in yeast and worms pinpointed a gene known as Sir2 as a key regulator of lifespan: deleting Sir2 limits lifespan, and extra copies lengthen it. Sir2 has a counterpart in mammals, but until now, very little was known about how it worked or what it had to do with aging. Working with mouse cells, researchers led by Anne Brunet, a postdoctoral fellow in neuroscience at Children’s Hospital who is now at Stanford University, discovered that Sir2 works by regulating a group of proteins known as FOXO transcription factors. FOXO proteins have also been linked with longevity; they control the expression of genes that regulate cell suicide, and also enable the cell to resist oxidative stress, or chemical stresses that can disrupt the cell’s DNA, or genetic blueprint.


"Aging involves damage to cells," says Dr. Michael E. Greenberg, director of Children’s Program in Neurobiology and senior investigator on the study. "If you reduce oxidative stress, you get less aging."

The Children’s team found that in the presence of oxidative stress, Sir2 promoted the ability of at least one FOXO protein, FOXO3, to provide stress resistance while suppressing its ability to induce cell death. In mammals, FOXO proteins confer stress resistance by triggering reactions that detoxify the damaging chemicals, known as free radicals. This leads to the repair of DNA damage while putting cell replication on hold, giving cells more time to perform the detoxification and repair process.

Greenberg, who holds a doctorate in biochemistry and is also a professor of neurology and neurobiology at Harvard Medical School, believes that bolstering a cell’s resistance to oxidative stress may help keep age-related disorders in check. He notes that the interaction between Sir2 and FOXO reduced the death of nerve cells, suggesting a possible strategy for reversing age-related nerve-cell degeneration, such as occurs in Alzheimer’s disease. The Sir2-FOXO interaction may also inhibit tumor formation, since DNA damage in cells can make them cancerous.

"If you have molecules that come together to mediate resistance to environmental stresses that cause aging, one might be able to come up with drugs that would affect this interaction and slow the aging process," Greenberg says.


The research was supported by the Ellison Medical Foundation, the National Institutes of Health, and the F.M. Kirby Foundation.

Children’s Hospital Boston is home to the world’s largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults for more than 130 years. More than 500 scientists, including seven members of the National Academy of Sciences, nine members of the Institute of Medicine and nine members of the Howard Hughes Medical Institute comprise Children’s research community. Children’s is the primary pediatric teaching affiliate of Harvard Medical School.

Susan Craig | EurekAlert!
Further information:
http://www.childrenshospital.org/

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>