Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biochemical clues to long lifespan revealed

20.02.2004


Findings extend longevity research from yeast and worms to mammals



Researchers at Children’s Hospital Boston have discovered how two key cellular influences on lifespan work together, providing insights that may help reveal aging mechanisms in humans. The findings extend longevity research from yeast and worms into mammals, and suggest that longer life results, at least in part, from biochemical interactions that boost cells’ ability to resist environmental stresses while inhibiting them from committing suicide. The study appears in the February 19th Science Express, the online edition of the journal Science.

Previous studies in yeast and worms pinpointed a gene known as Sir2 as a key regulator of lifespan: deleting Sir2 limits lifespan, and extra copies lengthen it. Sir2 has a counterpart in mammals, but until now, very little was known about how it worked or what it had to do with aging. Working with mouse cells, researchers led by Anne Brunet, a postdoctoral fellow in neuroscience at Children’s Hospital who is now at Stanford University, discovered that Sir2 works by regulating a group of proteins known as FOXO transcription factors. FOXO proteins have also been linked with longevity; they control the expression of genes that regulate cell suicide, and also enable the cell to resist oxidative stress, or chemical stresses that can disrupt the cell’s DNA, or genetic blueprint.


"Aging involves damage to cells," says Dr. Michael E. Greenberg, director of Children’s Program in Neurobiology and senior investigator on the study. "If you reduce oxidative stress, you get less aging."

The Children’s team found that in the presence of oxidative stress, Sir2 promoted the ability of at least one FOXO protein, FOXO3, to provide stress resistance while suppressing its ability to induce cell death. In mammals, FOXO proteins confer stress resistance by triggering reactions that detoxify the damaging chemicals, known as free radicals. This leads to the repair of DNA damage while putting cell replication on hold, giving cells more time to perform the detoxification and repair process.

Greenberg, who holds a doctorate in biochemistry and is also a professor of neurology and neurobiology at Harvard Medical School, believes that bolstering a cell’s resistance to oxidative stress may help keep age-related disorders in check. He notes that the interaction between Sir2 and FOXO reduced the death of nerve cells, suggesting a possible strategy for reversing age-related nerve-cell degeneration, such as occurs in Alzheimer’s disease. The Sir2-FOXO interaction may also inhibit tumor formation, since DNA damage in cells can make them cancerous.

"If you have molecules that come together to mediate resistance to environmental stresses that cause aging, one might be able to come up with drugs that would affect this interaction and slow the aging process," Greenberg says.


The research was supported by the Ellison Medical Foundation, the National Institutes of Health, and the F.M. Kirby Foundation.

Children’s Hospital Boston is home to the world’s largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults for more than 130 years. More than 500 scientists, including seven members of the National Academy of Sciences, nine members of the Institute of Medicine and nine members of the Howard Hughes Medical Institute comprise Children’s research community. Children’s is the primary pediatric teaching affiliate of Harvard Medical School.

Susan Craig | EurekAlert!
Further information:
http://www.childrenshospital.org/

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>