Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Life in the universe takes orders from space

20.02.2004


A century ago, when biologists used to talk about the primordial soup from which all life on Earth came, they probably never imagined from how far away the ingredients may have come. Recent findings have the origins of life reaching far out from what was once considered "the home planet." Evolution on the early Earth may have been influenced by some pretty far-out stuff.



In a paper published this week in the journal Science, Arizona State University Chemistry Professor Sandra Pizzarello claims that materials from as far away as the interstellar media could possibly have played an active role in establishing the chemistry involved in the origin of life on this planet.

In the paper, Pizarello and her co-author Arthur L. Weber of the SETI Institute show that the exclusive chirality of the proteins and sugars of life on Earth - their tendency to be left- or right-handed, could in fact be due to the chemical contribution of the countless meteorites that struck the planet during its early history. This paper provides a plausible explanation for how, with a little help from outside, the chemistry of non-life - characterized by randomness and complexity - becomes the ordered and specific chemistry of life.


Pizzarello studies meteorites and the chemicals housed within them. A particular type of meteorite - carbonaceous chondrites - holds particular interest. Carbonaceous chondrites are very primitive, stony meteorites that contain organic carbon. These meteorites are rare, but also very exciting for chemists interested in the origins of life on Earth and in the solar system. They contain amino acids - the molecules that make up proteins, and an essential part of the chemistry of life.

According to Pizzarello, it has been known for the last century that there are large amounts of carbon, hydrogen and nitrogen - the so-called biogenic elements - in the cosmos. And that it is reasonable to assume that these elements might have undergone some amount of chemical evolution before life even began.

According to Pizzarello, who studies meteorites from the collection at ASU (which has the largest university-owned collection in the world) the meteorites are the only evidence of chemical evolution scientists have in hand today. New techniques of meteorite analysis are leading to great breakthroughs in understanding where these meteorites came from and how they were formed. Even more exciting, work Pizzarello and her colleagues have recently published in Science explores what sort of contribution the chemical evolution represented by meteorites might have had on the early Earth.

The paper addresses what has been a basic difficulty in relating the chemical evolution represented by meteorites and the origin of terrestrial life on Earth. According to Pizzarello, this problem is that chemical evolution - what we see in meteorites - is characterized by randomness, while terrestrial life relies on specificity and selection. For example, the meteorites contain over 70 amino acids. A mere 20 amino acids make up life’s proteins. "There is a fundamental difficulty in trying to figure out how you go from confusion and randomness to functionality and specificity," said Pizzarello.

So far, only one trait has been found to be similar, to some extent, between amino acids in meteorites and biopolymers, that of L-"handedness" (chirality). Because organic molecules can be asymmetric if they have different groups attached to a carbon atom, they can arrange spatially in two ways, like the two hands, and be either left or right handed. All proteins involved in life on Earth are made up of L-amino acids, while sugars involved in life have a D structure. Scientists call this "homochirality."

An overabundance (excess) of the L-form (the chemical name is enantiomer), has also been found in some amino acids in meteorites. Pizzarello and Weber devised an experiment to find whether or not the amino acids found with L-enantiomeric excess in meteorites could have transferred their asymmetry during organic syntheses on the early Earth . If so, the meteorites could have provided a constant influx of materials with this excess - especially during a period early in the solar system’s history in which the Earth and other planets were pummeled heavily by meteorites.

Pizzarello and Weber report in Science that in fact their experiment succeeded in proving this possibility. In the laboratory, when performing sugar syntheses in water, using reactions that modeled what may have existed on the early Earth, the asymmetry in the amino acids led to a similar asymmetry in the sugars. Pizzarello and Weber thus were able to conclude that the delivery of material from outer space via meteorites - despite the seeming randomness and complexity of these materials - could in fact have "pushed" chemical evolution on Earth toward homochirality.

Pizzarello points out that these findings do not imply that life did not evolve on Earth, or that the meteorites were the only early source of enantiomeric excess - only that the steady contribution of these meteorites might have provided a nudge in the "right" (or, more accurately, "left") direction.

James Hathaway | EurekAlert!
Further information:
http://www.asu.edu/asunews/

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>