Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study in worms shows how genes linked to complexity in animals

19.02.2004


The evolution of a particular gene could be the reason why a certain worm might better tolerate a salty environment than its relatives, new research suggests.


Helen Chamberlin


Caenorhabditis elegans



The findings show that the excretory cells of the worm Caenorhabditis elegans – a widely studied nematode used in genetics research -- express a specific gene that seems to help the species tolerate a high-salt environment. The findings are reported in the current online edition of Nature Genetics.

Related Caenorhabditis species also have this gene – lin-48 – but these worms don’t express it like C. elegans does. As a result, the other worms died when exposed to the same levels of salt.


Somewhere along the evolutionary pathway, C. elegans developed the ability to survive in salty environments, said Helen Chamberlin, a study co-author and an assistant professor of molecular genetics at Ohio State. Lin-48 expression gives C. elegans some key advantages over its relatives; for one, there’s less competition for living space.

"But no one has collected C. elegans strictly from a salty environment to see if indeed these worms thrive there to the exclusion of other Caenorhabditis species," Chamberlin said. "Quite frankly, the ecology of these worms’ isn’t well studied."

Learning how C. elegans differs genetically from its relatives could give researchers insight into how organ systems in more complex animals evolved. One example could be the human kidney.

"Changes in gene function are at the heart of evolutionary complexity," Chamberlin said. "The expression of lin-48 in its excretory cells adds a layer of complexity to C. elegans."

Chamberlin conducted the study with Xiaodong Wang, a postdoctoral researcher in molecular genetics at Ohio State.

They compared how several species of Caenorhabditis worms regulated salt intake. C. elegans and its relatives are tiny, non-parasitic worms that grow to be about 1 millimeter long and thrive in rotting vegetation and other detritus.

While all of the worms studied had the lin-48 gene, C. elegans was the only species to express the gene in its excretory cells. The researchers looked at the excretory cells because that’s where they could easily see the differences in lin-48 expression.

In laboratory petri dishes, the worms were exposed to high levels of sodium chloride – regular table salt.

The expression of lin-48 in the excretory cells appeared to give C. elegans a survival advantage over its relatives, as the other species were unable to process the excess salt, and more than three-quarters died as a result.

"Having lin-48 in the excretory cell changes the cell, but we’re not sure how," Chamberlin said. "Lin-48 itself is a transcription factor – it turns on other genes that theoretically help C. elegans handle excessive levels of salt. But we don’t know what other genes it affects.

"Differences in gene expression contribute to structural and functional differences between species," she said. "In this case, C. elegans’ excretory system can handle excessive levels of salt, which may give the worms an additional benefit of living in naturally salty environments where other worms can’t survive."

The researchers concluded that C. elegans is more highly evolved than similar worm species because it developed a change in gene expression over time.

"This change made C. elegans more complex," Chamberlin said. "If we can understand how gene regulation becomes more complicated, it might tell us how organisms became increasingly complex."

A grant from the National Science Foundation supported this work.


Contact: Helen Chamberlin, (614) 688-0043; Chamberlin.27@osu.edu
Written by Holly Wagner, (614) 292-8310; Wagner.235@osu.edu

Holly Wagner | Ohio State University
Further information:
http://researchnews.osu.edu/archive/elegex.htm

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>