Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method for converting nitrogen to ammonia

18.02.2004


A research team at Cornell University has succeeded in converting nitrogen into ammonia using a long-predicted process that has challenged scientists for decades.



The achievement involves using a zirconium metal complex to add hydrogen atoms to the nitrogen molecule and convert it to ammonia, without the need for high temperatures or high pressure.

"The value of our work is that we have answered the very basic chemical question of how to take this very inert and unreactive [nitrogen] molecule and get it to a useful form," says Paul Chirik, Cornell assistant professor of chemistry and chemical biology.


Chirik and his two colleagues reported on the advance in a recent issue of the journal Nature (Vol. 427, Feb. 5, 2004). The research team included Chirik’s former graduate student Jaime Pool and research assistant Emil Lobkovsky.

In an accompanying "News and Views" in Nature , Michael Fryzuk of the University of British Columbia notes that "a remarkable chemical transformation has been discovered that is likely to have important implications for the production of ammonia." However, Chirik emphasizes that his research group has succeeded only in producing ammonia in a laboratory setting, molecule by molecule, and is not making claims for an industrial process.

Nitrogen makes up 78 percent of the Earth’s atmosphere and, thanks to a 90-year-old industrial process, it can be converted to ammonia-based fertilizer that sustains about 40 percent of the world’s population, according to Fryzuk.

The problem with converting nitrogen into a usable, industrial form is that, although the element is a simple molecule, it is held together by an incredibly strong bond between two atoms. Indeed only carbon monoxide has a stronger bond. But while carbon monoxide easily adheres to other molecules, nitrogen is non-polar and does not attach easily to metals. It also is hard to put electrons into nitrogen molecules, and hard to take them out. The industrial method for converting nitrogen to ammonia, the Haber-Bosch process (after Fritz Haber and Carl Bosch, both Nobel laureates), produces more than 100 million tons

of ammonia annually for the chemical industry and agriculture. The process requires high temperatures and pressure in order for nitrogen and hydrogen to interact over an iron surface, which serves as a catalyst.

The Chirik team, however, was able to break the nitrogen molecule’s atomic bond, using zirconium in a soluble form, at just 45 degrees Celsius (113 degrees Fahrenheit) and add hydrogen atoms to this so-called "dinitrogen bridge." Complete fixation to ammonia was achieved at 85 degrees Celsius (185 degrees Fahrenheit).

However, Chirik emphasizes that "the chance that anyone will ever replace the Haber-Bosch process is very small." His group’s discovery could, he believes, be useful in making "value-added nitrogen chemicals, such as hydrazines for rocket fuels or fine chemicals for drug synthesis or dyes.

Fryzuk notes that it has taken so long to achieve the Chirik group’s transformation of nitrogen because, he says, molecular nitrogen "is so chemically inert that even binding it to metal complexes in solution … was a decades-long challenge for inorganic chemists."

Unlike the Haber-Bosch process, the Chirik group’s transformation of nitrogen does not use a catalyst. Instead the zirconium makes only one ammonia molecule at a time, not vast numbers as in an industrial process, and, as Fryzuk notes, "there is no known homogenous catalyst that can effect this simple process" at low temperatures and pressure. (Instead of acting as a catalyst, the zirconium forms a new complex in which hydrogen atoms are added to the dinitrogen bridge, ultimately forming ammonia.)

Chirik says his group is currently searching for such a catalyst, which would be patentable. "Maybe we can come up with catalytic cycles that don’t make ammonia but make other nitrogen compounds. Arguably that would be more important than making ammonia," he says.

The title of the Nature article is "Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex." The research was funded by the National Science Foundation.

David Brand | Cornell News
Further information:
http://www.news.cornell.edu/releases/Feb04/Chirik.nitrogen1.deb.html

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>