Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method for converting nitrogen to ammonia

18.02.2004


A research team at Cornell University has succeeded in converting nitrogen into ammonia using a long-predicted process that has challenged scientists for decades.



The achievement involves using a zirconium metal complex to add hydrogen atoms to the nitrogen molecule and convert it to ammonia, without the need for high temperatures or high pressure.

"The value of our work is that we have answered the very basic chemical question of how to take this very inert and unreactive [nitrogen] molecule and get it to a useful form," says Paul Chirik, Cornell assistant professor of chemistry and chemical biology.


Chirik and his two colleagues reported on the advance in a recent issue of the journal Nature (Vol. 427, Feb. 5, 2004). The research team included Chirik’s former graduate student Jaime Pool and research assistant Emil Lobkovsky.

In an accompanying "News and Views" in Nature , Michael Fryzuk of the University of British Columbia notes that "a remarkable chemical transformation has been discovered that is likely to have important implications for the production of ammonia." However, Chirik emphasizes that his research group has succeeded only in producing ammonia in a laboratory setting, molecule by molecule, and is not making claims for an industrial process.

Nitrogen makes up 78 percent of the Earth’s atmosphere and, thanks to a 90-year-old industrial process, it can be converted to ammonia-based fertilizer that sustains about 40 percent of the world’s population, according to Fryzuk.

The problem with converting nitrogen into a usable, industrial form is that, although the element is a simple molecule, it is held together by an incredibly strong bond between two atoms. Indeed only carbon monoxide has a stronger bond. But while carbon monoxide easily adheres to other molecules, nitrogen is non-polar and does not attach easily to metals. It also is hard to put electrons into nitrogen molecules, and hard to take them out. The industrial method for converting nitrogen to ammonia, the Haber-Bosch process (after Fritz Haber and Carl Bosch, both Nobel laureates), produces more than 100 million tons

of ammonia annually for the chemical industry and agriculture. The process requires high temperatures and pressure in order for nitrogen and hydrogen to interact over an iron surface, which serves as a catalyst.

The Chirik team, however, was able to break the nitrogen molecule’s atomic bond, using zirconium in a soluble form, at just 45 degrees Celsius (113 degrees Fahrenheit) and add hydrogen atoms to this so-called "dinitrogen bridge." Complete fixation to ammonia was achieved at 85 degrees Celsius (185 degrees Fahrenheit).

However, Chirik emphasizes that "the chance that anyone will ever replace the Haber-Bosch process is very small." His group’s discovery could, he believes, be useful in making "value-added nitrogen chemicals, such as hydrazines for rocket fuels or fine chemicals for drug synthesis or dyes.

Fryzuk notes that it has taken so long to achieve the Chirik group’s transformation of nitrogen because, he says, molecular nitrogen "is so chemically inert that even binding it to metal complexes in solution … was a decades-long challenge for inorganic chemists."

Unlike the Haber-Bosch process, the Chirik group’s transformation of nitrogen does not use a catalyst. Instead the zirconium makes only one ammonia molecule at a time, not vast numbers as in an industrial process, and, as Fryzuk notes, "there is no known homogenous catalyst that can effect this simple process" at low temperatures and pressure. (Instead of acting as a catalyst, the zirconium forms a new complex in which hydrogen atoms are added to the dinitrogen bridge, ultimately forming ammonia.)

Chirik says his group is currently searching for such a catalyst, which would be patentable. "Maybe we can come up with catalytic cycles that don’t make ammonia but make other nitrogen compounds. Arguably that would be more important than making ammonia," he says.

The title of the Nature article is "Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex." The research was funded by the National Science Foundation.

David Brand | Cornell News
Further information:
http://www.news.cornell.edu/releases/Feb04/Chirik.nitrogen1.deb.html

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>