Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New method for converting nitrogen to ammonia


A research team at Cornell University has succeeded in converting nitrogen into ammonia using a long-predicted process that has challenged scientists for decades.

The achievement involves using a zirconium metal complex to add hydrogen atoms to the nitrogen molecule and convert it to ammonia, without the need for high temperatures or high pressure.

"The value of our work is that we have answered the very basic chemical question of how to take this very inert and unreactive [nitrogen] molecule and get it to a useful form," says Paul Chirik, Cornell assistant professor of chemistry and chemical biology.

Chirik and his two colleagues reported on the advance in a recent issue of the journal Nature (Vol. 427, Feb. 5, 2004). The research team included Chirik’s former graduate student Jaime Pool and research assistant Emil Lobkovsky.

In an accompanying "News and Views" in Nature , Michael Fryzuk of the University of British Columbia notes that "a remarkable chemical transformation has been discovered that is likely to have important implications for the production of ammonia." However, Chirik emphasizes that his research group has succeeded only in producing ammonia in a laboratory setting, molecule by molecule, and is not making claims for an industrial process.

Nitrogen makes up 78 percent of the Earth’s atmosphere and, thanks to a 90-year-old industrial process, it can be converted to ammonia-based fertilizer that sustains about 40 percent of the world’s population, according to Fryzuk.

The problem with converting nitrogen into a usable, industrial form is that, although the element is a simple molecule, it is held together by an incredibly strong bond between two atoms. Indeed only carbon monoxide has a stronger bond. But while carbon monoxide easily adheres to other molecules, nitrogen is non-polar and does not attach easily to metals. It also is hard to put electrons into nitrogen molecules, and hard to take them out. The industrial method for converting nitrogen to ammonia, the Haber-Bosch process (after Fritz Haber and Carl Bosch, both Nobel laureates), produces more than 100 million tons

of ammonia annually for the chemical industry and agriculture. The process requires high temperatures and pressure in order for nitrogen and hydrogen to interact over an iron surface, which serves as a catalyst.

The Chirik team, however, was able to break the nitrogen molecule’s atomic bond, using zirconium in a soluble form, at just 45 degrees Celsius (113 degrees Fahrenheit) and add hydrogen atoms to this so-called "dinitrogen bridge." Complete fixation to ammonia was achieved at 85 degrees Celsius (185 degrees Fahrenheit).

However, Chirik emphasizes that "the chance that anyone will ever replace the Haber-Bosch process is very small." His group’s discovery could, he believes, be useful in making "value-added nitrogen chemicals, such as hydrazines for rocket fuels or fine chemicals for drug synthesis or dyes.

Fryzuk notes that it has taken so long to achieve the Chirik group’s transformation of nitrogen because, he says, molecular nitrogen "is so chemically inert that even binding it to metal complexes in solution … was a decades-long challenge for inorganic chemists."

Unlike the Haber-Bosch process, the Chirik group’s transformation of nitrogen does not use a catalyst. Instead the zirconium makes only one ammonia molecule at a time, not vast numbers as in an industrial process, and, as Fryzuk notes, "there is no known homogenous catalyst that can effect this simple process" at low temperatures and pressure. (Instead of acting as a catalyst, the zirconium forms a new complex in which hydrogen atoms are added to the dinitrogen bridge, ultimately forming ammonia.)

Chirik says his group is currently searching for such a catalyst, which would be patentable. "Maybe we can come up with catalytic cycles that don’t make ammonia but make other nitrogen compounds. Arguably that would be more important than making ammonia," he says.

The title of the Nature article is "Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex." The research was funded by the National Science Foundation.

David Brand | Cornell News
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>