Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical that turns mouse stem cells into heart muscles discovered by Scripps researchers

18.02.2004


A group of researchers from The Skaggs Institute for Chemical Biology at The Scripps Research Institute and from the Genomics Institute of the Novartis Research Foundation (GNF) has identified a small synthetic molecule that can control the fate of embryonic stem cells.



This compound, called cardiogenol C, causes mouse embryonic stem cells to selectively differentiate into "cardiomyocytes," or heart muscle cells, an important step on the road to developing new therapies for repairing damaged heart tissue.

Normally, cells develop along a pathway of increasing specialization. In humans and other mammals, these developmental events are controlled by mechanisms and signaling pathways we are only beginning to understand. One of scientists’ great challenges is to find ways to selectively differentiate stem cells into specific cell types.


"It’s hard to control which specific lineage the stem cells differentiate into," says Xu Wu, who is a doctoral candidate in the Kellogg School of Science and Technology at Scripps Research. "We have discovered small molecules that can [turn] embryonic stem cells into heart muscle cells."

Wu is the first author of the study to be published in an upcoming issue of the Journal of the American Chemical Society and which was conducted under the direction of Peter G. Schultz, Ph.D., who is a professor of chemistry and Scripps Family Chair of the Skaggs Institute for Chemical Biology at The Scripps Research Institute, and Sheng Ding, Ph.D, who is an assistant professor in the Department of Chemistry at Scripps Research.

Regenerative Medicine and Stem Cell Therapy

Stem cells have huge potential in medicine because they have the ability to differentiate into many different cell types -- potentially providing cells that have been permanently lost by a patient. For instance, neurodegenerative diseases like Parkinson’s, in which dopaminergic neurons in the brain are lost, may be ameliorated by regenerating neurons. And Type I diabetes -- in which beta cells are lost -- might be treated by generating new beta cells.

Likewise, a damaged heart, which is composed mainly of cardiac muscle cells that the body may be unable to replace once lost, could potentially be repaired with new muscle cells derived from stem cells.

Scripps Research scientists reasoned that if stem cells were exposed to certain synthetic chemicals, they might selectively differentiate into particular types of cells. In order to test this hypothesis, the scientists screened some 100,000 small molecules from a combinatorial small molecule library that they synthesized. Just as a common library is filled with different books, this combinatorial library is filled with different small organic compounds.

From this assortment, Wu, Ding, and Schultz designed a method to identify molecules able to differentiate the mouse embryonic stem cells into heart muscle cells. They engineered embryonal carcinoma (EC) cells with a reporter gene encoding a protein called luciferase, and they inserted this luciferase gene downstream of the promoter sequence of a gene that is only expressed in cardiomyocytes. Then they placed these EC cells into separate wells and added different chemicals from the library to each. Any engineered EC cells induced to become heart muscle cells expressed luciferase. This made the well glow, distinguishing it from tens of thousands of other wells when examined with state-of-the-art high-throughput screening equipment. These candidates were confirmed using more rigorous assays.

In the end, Wu, Ding, Schultz, and their colleagues found a number of molecules that were able to induce the differentiation of EC cells into cardiomyocytes, and they chose one, called Cardiogenol C, for further studies. Cardiogenol C proved to be effective at directing embryonic stem cells into cardiomyocytes. Using Cardiogenol C, the scientists report that they could selectively induce more than half of the stem cells in their tests to differentiate into cardiac muscle cells. Existing methods for making heart muscle cells from embryonic stem cells are reported to result in merely five percent of the stem cells becoming the desired cell type.

Now Wu, Ding, Schultz, and their colleagues are working on understanding the exact biochemical mechanism whereby Cardiogenol C causes the stem cells to differentiate into cardiomyocytes, as well as attempting to improve the efficiency of the process.

The article, "Small Molecules that Induce Cardiomyogenesis in Embryonic Stem Cells" was authored by Xu Wu, Sheng Ding, Qiang Ding, Nathanael S. Gray, and Peter G. Schultz and is available to online subscribers of the Journal of the American Chemical Society at: http://pubs.acs.org/cgi-bin/asap.cgi/jacsat/asap/abs/ja038950i.html. The article will also be published in an upcoming issue of the Journal of the American Chemical Society.


This work was supported by The Skaggs Institute for Research and the Novartis Research Foundation.

About The Scripps Research Institute

The Scripps Research Institute in La Jolla, California, is one of the world’s largest, private, non-profit biomedical research organizations. It stands at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its research into immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune diseases, cardiovascular diseases and synthetic vaccine development.

Jason Bardi | EurekAlert!
Further information:
http://pubs.acs.org/cgi-bin/asap.cgi/jacsat/asap/abs/ja038950i.html

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>