Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging technique reveals new structure in retinal cells

18.02.2004


A new imaging technique used by a group of researchers at the University of Washington and elsewhere has revealed a previously unknown cellular structure in the retinas of mice. The structure is the site for an important part of the retinoid cycle, a chemical process critical to vision, the scientists said. Results of their study, which took more than three years, appeared in the Feb. 2 issue of the Journal of Cell Biology.



Dubbed a retinosome, the newly discovered organelle houses retinyl esters, which are an intermediate chemical product in the retinoid cycle. That cycle is critical in the regeneration process for 11-cis-retinal, a light-absorbing chemical vital to vision.

Dr. Yoshikazu Imanishi, senior research fellow in the UW Department of Ophthalmology, worked on the project with Dr. Kris Palczewski, Bishop Professor and professor of ophthalmology, chemistry, and pharmacology at the UW; Matthew Batten, a research scientist in Palczewski’s lab; and researchers from Vanderbilt University and the University of Utah.


Retina tissue doesn’t survive long outside of the eye, so Imanishi and his colleagues developed a technique to examine the tissue in a natural setting. They used a pulse laser to perform two-photon fluorescent microscopy on the retinas of live, anesthetized mice. The low-power, non-invasive technique allowed the researchers to examine the retina tissue within the eye without damaging it.

After discovering the previously unknown structure, the researchers isolated its role in the retinoid cycle through a chemical analysis. They also watched the retinoid cycle in normal mice and two types of transgenic mice, one without the ability to produce retinyl esters and the other unable to process the esters. Both the analytical chemical method and the genetic tests indicate that the retinosome houses retinyl esters for the retinoid cycle.

The researchers hope the new imaging technique will continue to boost understanding of the retina and the retinoid cycle. Since many types of congenital blindness are caused by defects in the retinoid cycle, the researchers hope their findings could one day help in clinical applications.

Justin Reedy | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>