Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Imaging technique reveals new structure in retinal cells


A new imaging technique used by a group of researchers at the University of Washington and elsewhere has revealed a previously unknown cellular structure in the retinas of mice. The structure is the site for an important part of the retinoid cycle, a chemical process critical to vision, the scientists said. Results of their study, which took more than three years, appeared in the Feb. 2 issue of the Journal of Cell Biology.

Dubbed a retinosome, the newly discovered organelle houses retinyl esters, which are an intermediate chemical product in the retinoid cycle. That cycle is critical in the regeneration process for 11-cis-retinal, a light-absorbing chemical vital to vision.

Dr. Yoshikazu Imanishi, senior research fellow in the UW Department of Ophthalmology, worked on the project with Dr. Kris Palczewski, Bishop Professor and professor of ophthalmology, chemistry, and pharmacology at the UW; Matthew Batten, a research scientist in Palczewski’s lab; and researchers from Vanderbilt University and the University of Utah.

Retina tissue doesn’t survive long outside of the eye, so Imanishi and his colleagues developed a technique to examine the tissue in a natural setting. They used a pulse laser to perform two-photon fluorescent microscopy on the retinas of live, anesthetized mice. The low-power, non-invasive technique allowed the researchers to examine the retina tissue within the eye without damaging it.

After discovering the previously unknown structure, the researchers isolated its role in the retinoid cycle through a chemical analysis. They also watched the retinoid cycle in normal mice and two types of transgenic mice, one without the ability to produce retinyl esters and the other unable to process the esters. Both the analytical chemical method and the genetic tests indicate that the retinosome houses retinyl esters for the retinoid cycle.

The researchers hope the new imaging technique will continue to boost understanding of the retina and the retinoid cycle. Since many types of congenital blindness are caused by defects in the retinoid cycle, the researchers hope their findings could one day help in clinical applications.

Justin Reedy | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>