Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson Researchers Uncover Biochemical Clues to How Cells Migrate in Embryos

17.02.2004


The work offers potential insights into disease processes, including cancer



Researchers at Jefferson Medical College and Jefferson’s Kimmel Cancer Center are gaining a better understanding of the cues that help guide cells to the right places in developing embryos. Steven Farber, Ph.D., assistant professor of microbiology and immunology at Jefferson Medical College of Thomas Jefferson University in Philadelphia, and his co-workers have found that statins, the group of anti-cholesterol drugs that includes the popular Lipitor, interfere with a biochemical pathway vital to the migration of germ cells in embryonic zebrafish. In all organisms, including humans, germ cells are stem cells that are destined to become either sperm or egg cells, and they must migrate from one place in the developing embryo to another before development can occur.

A better understanding of germ cell migration, Dr. Farber says, and cell migration in general, might lead to insights into disease processes, including cancer. Cancer turns deadly when it spreads to other areas in the body.


Dr. Farber and his co-workers report their findings in the February 2004 issue of the journal Developmental Cell.

“We have identified an enzyme in zebrafish – and there is a companion paper in the journal identifying the same pathway in fruit flies – showing that if you interfere with this enzyme, germ cells don’t migrate correctly,” he says. “It’s likely a general feature of all vertebrates, and not simply a fish-specific observation.”

In earlier work, Dr. Farber had studied the effects of statins on lipid metabolism in zebrafish embryos. Dr. Farber knew that researchers at New York University School of Medicine had found that a mutation in a gene for an enzyme, HMG-CoAReductase, disrupted germ cell migration in fruit flies. In both the fruit fly and all vertebrate embryos, germ cells need to migrate through the developing embryo to their final destination, where they develop into sperm or egg cells. HMG-CoAReductase also plays a central role in cholesterol synthesis in both humans and zebrafish.

Using a special technique developed by a colleague, they actually visualized the effect of Lipitor on germ cells, which, he says, caused the cells to “get lost.” The cells were unable to migrate to the correct place in the developing embryo. Dr. Farber’s group found that HMG-CoAReductase is important not just for fly germ cell migration, but also for a model vertebrate system such as the zebrafish. These data, he says, suggest that this pathway is “a highly conserved feature” of animal development.

The researchers found that they could block the effects of Lipitor if they injected the zebrafish beforehand with mevalonate, which is what HMGCoAReductase makes. They continued along the pathway, step by step, chemically knocking out enzymes and replacing them with their products to see if they could restore the normal pathway. They subsequently determined that blocking a particular enzyme, geranylgeranyl transferase I, which is further along the pathway from HMG-CoAReductase and responsible for transferring a lipid to a target protein – a process called prenylation – resulted in abnormal germ cell migration.

The work may have larger implications. “It’s still preliminary, but we suspect that this pathway is a model for long-range migration of cells in general,” he says. “We’ve identified a pathway, but not the particular protein that is modified. This is a protein that needs a lipid added in order to enable migrating cells to find their home.” He and his team currently are trying to identify this mystery protein.

It is also possible that this pathway is important in cancer metastasis. “It’s a commonly held view among scientists that many pathways common to cancer are in some regard a recapitulation of the pathways involved in early development,” says Dr. Farber. “A cancer cell growing out of control needs to metastasize to other areas to set up shop. We suspect this pathway is what enables a cancer cell to find a good place to grow a tumor. Targeting this pathway might be a logical anti-cancer treatment.”

Steven Benowitz | TJUH
Further information:
http://www.jeffersonhospital.org/news/e3front.dll?durki=17540

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>