Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structure solved by Scripps scientists shows one way that body controls gene expression

16.02.2004


A group of scientists at The Scripps Research Institute has solved the structure of a protein that regulates the expression of genes by controlling the stability of mRNA -- an intermediate form of genetic information between DNA genes and proteins.

"Gene expression can be controlled at many levels, " says Scripps Research Professor Peter Wright, Ph.D., who is chairman of the Department of Molecular Biology and Cecil H. and Ida M. Green Investigator in Medical Research at Scripps Research. "One of them is at the level of the message."

The structure of the "tandem zinc finger" domain of the regulatory protein TIS11d in complex with a strand of mRNA was solved in the laboratory of Wright and H. Jane Dyson, Ph.D., by Maria A. Martinez-Yamout, Ph.D., of Scripps Research, and Brian P. Hudson, Ph.D., of Rutgers University. This is the first such structure to be solved, and it provides insights into the process of gene regulation at the atomic level.



In next month’s issue of Nature Structural & Molecular Biology, Wright and his colleagues describe the tandem zinc finger -- thus called because it contains two finger-like domains that must bind to zinc to fold into its active form. These tandem zinc fingers are a very common motif in mammalian genes, and hundreds of genes in the human genome contain some version of them. This diversity is perhaps indicative of the capability of TZF proteins to specifically recognize a large number of different RNA sequence motifs.

Insights into the workings of the regulatory protein TIS11d are particularly valuable because these proteins are involved in a number of fundamental biological processes, such as inflammation, and are potential targets for therapeutics in diseases where these processes go awry.

The Regulation of Genes at the mRNA Level

Regulation of gene expression in humans and other organisms is a crucial part of biology, and biology has a large repertoire of mechanisms for turning genes on and off. Many of the proteins encoded by genes in human and other genomes specialize in regulating other genes, often in complicated feedback mechanisms.

Shutting off the transcription of a gene -- the process whereby a single-stranded piece of messenger RNA (mRNA) is made from a double-stranded piece of DNA -- has for decades been recognized by molecular and cell biologists as a crucial way the cell regulates the expression of a gene.

In the last several years, many of these same scientists, including Wright and his colleagues, have been growing aware of the importance of post-transcriptional gene regulation, which occurs at the level of mRNA.

In mammals, once DNA genes are transcribed into mRNAs in the nucleus of a cell, they are usually transported outside the nucleus, where the mRNAs can be "translated" into proteins. At this point, certain regulatory proteins stabilize the mRNA, allowing it to be translated by the cell’s machinery into proteins. Other regulatory proteins destabilize the mRNAs, marking them for degradation by the cell’s machinery.

TIS11d belongs to a common family of regulatory proteins of this latter type. It regulates the levels of many important proteins involved in the body’s inflammatory response, such as tumor necrosis factor (TNF) and interferons, by marking the TNF and interferon mRNAs for destruction. With incredible specificity, this protein uses its tandem zinc finger domain to recognize particular sequences of TNF and interferon mRNA.

By solving the structure, Wright and his colleagues revealed for the first time in atomic detail exactly how this recognition occurs.

The TIS11d protein basically mimics the base-pairing that takes place in DNA by using its tandem zinc finger domains to bind to the mRNA. Following the same principle that two strands of DNA use to bind to each other, the TIS11d protein binds to the mRNA by forming hydrogen bonds with the Watson-Crick edges of the mRNA.

"It was remarkable to see how these tiny structures [work]," says Wright.

The research article "Recognition of the mRNA AU-rich element by the zinc finger domain of TIS11d" is authored by Brian P. Hudson, Maria A. Martinez-Yamout, H. Jane Dyson, and Peter E. Wright and appears in the March 2004 issue of Nature Structural & Molecular Biology.


The research was funded by the National Institutes of Health and The Skaggs Institute for Research.

About The Scripps Research Institute

The Scripps Research Institute in La Jolla, California, is one of the world’s largest, private, non-profit biomedical research organizations. It stands at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its research into immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune diseases, cardiovascular diseases and synthetic vaccine development.

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu/

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>