Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structure solved by Scripps scientists shows one way that body controls gene expression

16.02.2004


A group of scientists at The Scripps Research Institute has solved the structure of a protein that regulates the expression of genes by controlling the stability of mRNA -- an intermediate form of genetic information between DNA genes and proteins.

"Gene expression can be controlled at many levels, " says Scripps Research Professor Peter Wright, Ph.D., who is chairman of the Department of Molecular Biology and Cecil H. and Ida M. Green Investigator in Medical Research at Scripps Research. "One of them is at the level of the message."

The structure of the "tandem zinc finger" domain of the regulatory protein TIS11d in complex with a strand of mRNA was solved in the laboratory of Wright and H. Jane Dyson, Ph.D., by Maria A. Martinez-Yamout, Ph.D., of Scripps Research, and Brian P. Hudson, Ph.D., of Rutgers University. This is the first such structure to be solved, and it provides insights into the process of gene regulation at the atomic level.



In next month’s issue of Nature Structural & Molecular Biology, Wright and his colleagues describe the tandem zinc finger -- thus called because it contains two finger-like domains that must bind to zinc to fold into its active form. These tandem zinc fingers are a very common motif in mammalian genes, and hundreds of genes in the human genome contain some version of them. This diversity is perhaps indicative of the capability of TZF proteins to specifically recognize a large number of different RNA sequence motifs.

Insights into the workings of the regulatory protein TIS11d are particularly valuable because these proteins are involved in a number of fundamental biological processes, such as inflammation, and are potential targets for therapeutics in diseases where these processes go awry.

The Regulation of Genes at the mRNA Level

Regulation of gene expression in humans and other organisms is a crucial part of biology, and biology has a large repertoire of mechanisms for turning genes on and off. Many of the proteins encoded by genes in human and other genomes specialize in regulating other genes, often in complicated feedback mechanisms.

Shutting off the transcription of a gene -- the process whereby a single-stranded piece of messenger RNA (mRNA) is made from a double-stranded piece of DNA -- has for decades been recognized by molecular and cell biologists as a crucial way the cell regulates the expression of a gene.

In the last several years, many of these same scientists, including Wright and his colleagues, have been growing aware of the importance of post-transcriptional gene regulation, which occurs at the level of mRNA.

In mammals, once DNA genes are transcribed into mRNAs in the nucleus of a cell, they are usually transported outside the nucleus, where the mRNAs can be "translated" into proteins. At this point, certain regulatory proteins stabilize the mRNA, allowing it to be translated by the cell’s machinery into proteins. Other regulatory proteins destabilize the mRNAs, marking them for degradation by the cell’s machinery.

TIS11d belongs to a common family of regulatory proteins of this latter type. It regulates the levels of many important proteins involved in the body’s inflammatory response, such as tumor necrosis factor (TNF) and interferons, by marking the TNF and interferon mRNAs for destruction. With incredible specificity, this protein uses its tandem zinc finger domain to recognize particular sequences of TNF and interferon mRNA.

By solving the structure, Wright and his colleagues revealed for the first time in atomic detail exactly how this recognition occurs.

The TIS11d protein basically mimics the base-pairing that takes place in DNA by using its tandem zinc finger domains to bind to the mRNA. Following the same principle that two strands of DNA use to bind to each other, the TIS11d protein binds to the mRNA by forming hydrogen bonds with the Watson-Crick edges of the mRNA.

"It was remarkable to see how these tiny structures [work]," says Wright.

The research article "Recognition of the mRNA AU-rich element by the zinc finger domain of TIS11d" is authored by Brian P. Hudson, Maria A. Martinez-Yamout, H. Jane Dyson, and Peter E. Wright and appears in the March 2004 issue of Nature Structural & Molecular Biology.


The research was funded by the National Institutes of Health and The Skaggs Institute for Research.

About The Scripps Research Institute

The Scripps Research Institute in La Jolla, California, is one of the world’s largest, private, non-profit biomedical research organizations. It stands at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its research into immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune diseases, cardiovascular diseases and synthetic vaccine development.

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu/

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>