Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Equine cloning’s triple play sheds light on calcium, cell signaling, human disease


The successful cloning of three mules and their excellent health is important to the horse industry, a University of Idaho scientist said Monday at Seattle.

More important is the potential human health aspects of the cloning project. Dr. Gordon Woods, UI professor of animal and veterinary science, said the work aided understanding of calcium’s role in cell signaling and possibly in the progression of human disease.

Woods, who directs the Northwest Equine Reproduction Laboratory at UI, said increasing calcium levels in the fluid surrounding cloned equine embryos proved the key to equine cloning.

Woods was scheduled to participate in a Feb. 16 panel discussion, Cloning Controversies: Ethics, Science and Society, during the American Association for the Advancement of Science annual meeting.

The birth of the mule foal Idaho Gem on May 4, 2003, marked the first successful equine cloning. The births June 9 of Utah Pioneer and July 27 of Idaho Star, two more mules cloned from the same fetal mule skin cell line, added to the success of the University of Idaho-Utah State University project.

All three mule foals were born unassisted after prototypical pregnancies. All three are vigorous, healthy and developing normally. The triplets were displayed in Seattle during Family Science Day Feb. 15 during the AAAS annual meeting.

"The manipulation of calcium concentrations to achieve success in equine cloning may have implications for other assisted equine reproduction techniques," Woods said. "Increasing intracellular calcium in horses may increase their fertility in general."

Woods began to focus on calcium after becoming interested in why horses appear to be more resistant to some forms of cancer. It is not unusual for light-colored horses to develop melanomas or skin cancers that do not metastasize. Woods found the veterinary literature was devoid of a report of a stallion with prostate cancer. The cancer mortality rate for horses is approximately 8 percent for horses and 24 percent for humans, he said.

Blood samples from men and stallions heightened his interest in calcium. Tests showed intracellular calcium concentrations in horse red blood cells were 2.3 times less than in human red blood cells. Extracellular calcium concentrations were reversed, with 1.5 times greater calcium concentrations outside cells in equines than in humans.

The lower concentrations of calcium within horse cells supported a model proposed by Woods. He postulated the equine system was "slower" physiologically than the human system. The lower cancer rates in equines appeared to support that idea.

Woods connected that hypothesis to embryonic development. "There are electrifying similarities between cancer metastasis and embryo division," said Woods.

Woods’ collaborators agreed to try stimulating embryonic development by increasing calcium concentrations in the surrounding medium. Dr. Dirk Vanderwall, UI assistant professor of animal and veterinary science, and Dr. Ken White, Utah State University professor of animal, dairy and veterinary science, teamed with Woods on the project.

The results were immediate, Woods said, generating a seven-fold increase in the two-week pregnancy rate of transferred clone embryos. Only two pregnancies lasted two weeks without manipulating calcium levels. Nineteen pregnancies lasted two weeks or more with calcium treatments. Of 21 pregnancies detected at two weeks, 11 lasted 30 days and five lasted 45 days. Three pregnancies lasted past 60 days, and all of them survived full term and resulted in normal births.

The cloning project provided insight into calcium’s role in cell signaling. As some human diseases progress, calcium levels escalate.

"The connection between calcium and many forms of human disease is well documented," Woods said. Calcium functions as a universal intracellular messenger, controlling processes as diverse as gene transcription, muscle transcription and cell proliferation, Woods noted. A breakdown in calcium regulation is implicated in diseases ranging from cancer to diabetes, heart disease and neurological disorders.

Gordon Woods | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>