Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rutgers researcher offers a new perspective on human evolution

16.02.2004


The fossil remains of early humans gave generations of scientists the clues needed to piece together much of our ancestral lineage. Chi-Hua Chiu now leads us into another dimension in the study of human origins: the underlying developmental and genetic processes that led to these remarkable evolutionary changes.



"To develop a better understanding of the genetic basis of human evolution, we must discover specific relationships between particular genetic changes and their resulting effects on the body plan," said Chiu, an assistant professor of genetics and anthropology at Rutgers, The State University of New Jersey.

Chiu explained that our expanding knowledge of genomics will open doors to an understanding of the ways in which genes regulate development, both in humans and their nonhuman relations.


Locomotion and limb structure have long been topics of interest to paleoanthropologists. In a presentation at the annual meeting of the American Association for the Advancement of Science in Seattle Monday (Feb. 16), Chiu spoke of correlating the evolution of genes responsible for the formation of arms and legs with the observable diversity in limb structure among humans and other primates.

In the growing field of evolution and development, known as EvoDevo, the view is that significant developmental differences are due to changes in gene regulation. "Once we have the structure of gene regulatory sequences, comparative studies of humans and nonhuman primates can be used to examine the evolution of these sequences, their functions and the resulting anatomical differences," said Chiu.

Chiu counseled her listeners to look to the mouse for answers, as have many research scientists before. "Primates are not ideal model organisms for developmental genetics and embryology because they have long generation times and produce small litters," she said.

Recognizing that mice certainly have important limitations as models for human or nonhuman primate development, Chiu noted that historical uses of mice in the laboratory have given EvoDevo researchers a head start. "There is already a substantial amount of information available on mouse developmental genetics," she said.

"Modern developmental genetics, comparative genomics and molecular embryology with model organisms provide the foundation on which to build innovative studies of genotype-phenotype relationships in human origins."

Joseph Blumberg | EurekAlert!
Further information:
http://www.rutgers.edu/

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>