Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neurologists create a font of human nerve cells

16.02.2004


Scientists have created an unlimited supply of a type of nerve cell found in the spinal cord – a self-renewing cell line that offers a limitless supply of human nerve cells in the laboratory. Such a supply has long been one goal of neurologists anxious to replace dead or dying cells with healthy ones in a host of neurological diseases.



In this study, appearing in the March issue of Nature Biotechnology, the scientists then used the cells to partially repair damaged spinal cords in laboratory animals, re-growing small sections of the spinal cord that had been damaged. Doctors emphasize that tests in people with damaged spinal cords or other neurological conditions are a long ways off.

The researchers, led by neurologist Steven Goldman, M.D., Ph.D., of the University of Rochester Medical Center, created the unique cells by introducing a gene called telomerase, which is responsible for the ability of stem cells to live indefinitely, into more specialized "progenitor" cells. In normal development, these progenitor cells give rise to very specific types of spinal neurons, but they do so for only short periods of time, because they lack the ability to continuously divide. With the newly added telomerase gene, the spinal progenitor cells were able to continuously divide while still producing only specific types of neurons. The outcome was a line of immortal progenitor cells, capable of churning out human spinal neurons indefinitely.


While stem cells receive a great deal of attention as a possible source of life-saving treatments, progenitor cells offer great potential, Goldman says. To be sure, progenitor cells lack a key feature of stem cells: Their potential to become nearly any type of cell. But what progenitor cells lack in potential, they make up for with commitment: They have already "decided" exactly what type of cell to become in the body, an advantage when treating a disease where one specific cell type is at risk. A patient with Parkinson’s disease, for example, may only needs to replace dopamine-producing neurons, while in patients with multiple sclerosis, only cells that produce myelin need be restored.

Since committed progenitor cell normally can divide for only a limited number of times, until now scientists have been unable to produce enough to make a difference clinically. Goldman’s team solved the problem by introducing the gene for telomerase at just the right moment in the cell’s lifetime, when it has committed to a particular spinal cell type, thus immortalizing the cells at this key juncture. The result was a line of immortal progenitor cells giving rise only to human spinal neurons, including both motor neurons and interneurons, two of the most clinically important cell types of the spinal cord.

"The progenitor cells are immortalized at a stage when they only give rise to the type of neuron we want, thus becoming an ongoing source of these neurons," says Goldman, who is professor of Neurology and chief of the department’s Division of Cell and Gene Therapy.

Goldman’s team propagated these cells for over two years, the longest anyone has ever maintained such a line of neuronal progenitor cells. With these select neurons in hand, Goldman’s colleagues, led by Maiken Nedergaard, M.D., Ph.D., professor of Neurosurgery, then injected the modified progenitors into rats and found that the cells replaced damaged parts of the spinal cord with new nerve cells.

A key finding was the lack of tumors, or any tendency toward tumor growth, says Goldman. Telomerase is one of the ingredients that cancer cells needs to survive, and previous work had indicated that turning the gene for telomerase on could heighten the risk of tumors. But the group followed the rats closely for six months, and the cells in the laboratory for two years, and found no increase in tumors or a tendency to develop into tumors. After about a month, the cells in the animals stopped proliferating, as neurons in the spinal cord normally do.

Since the spinal cord is made up of several types of neurons, the group now is creating and working with other cells that would create other types of neurons necessary to repair spinal cord tissue.

"This work is the culmination of six years of work, and it will be many more years before an approach like this can be tried in human patients. But the promise is extraordinary," says Goldman, whose project was funded by Project ALS and the Christopher Reeve Paralysis Foundation.


From Rochester, other authors include Martha Windrem, Ph.D. Other authors include Neeta Roy, Takahiro Nakano, H. Michael Keyoung, William Rashbaum, M. Lita Alonso, Jian Kang, Weiguo Peng, and Jane Lin of Cornell, and Melissa Carpenter of Geron Corp., who is now at the Robarts Research Institute in Canada.

Tom Rickey | EurekAlert!
Further information:
http://www.urmc.rochester.edu/

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>