Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neurologists create a font of human nerve cells

16.02.2004


Scientists have created an unlimited supply of a type of nerve cell found in the spinal cord – a self-renewing cell line that offers a limitless supply of human nerve cells in the laboratory. Such a supply has long been one goal of neurologists anxious to replace dead or dying cells with healthy ones in a host of neurological diseases.



In this study, appearing in the March issue of Nature Biotechnology, the scientists then used the cells to partially repair damaged spinal cords in laboratory animals, re-growing small sections of the spinal cord that had been damaged. Doctors emphasize that tests in people with damaged spinal cords or other neurological conditions are a long ways off.

The researchers, led by neurologist Steven Goldman, M.D., Ph.D., of the University of Rochester Medical Center, created the unique cells by introducing a gene called telomerase, which is responsible for the ability of stem cells to live indefinitely, into more specialized "progenitor" cells. In normal development, these progenitor cells give rise to very specific types of spinal neurons, but they do so for only short periods of time, because they lack the ability to continuously divide. With the newly added telomerase gene, the spinal progenitor cells were able to continuously divide while still producing only specific types of neurons. The outcome was a line of immortal progenitor cells, capable of churning out human spinal neurons indefinitely.


While stem cells receive a great deal of attention as a possible source of life-saving treatments, progenitor cells offer great potential, Goldman says. To be sure, progenitor cells lack a key feature of stem cells: Their potential to become nearly any type of cell. But what progenitor cells lack in potential, they make up for with commitment: They have already "decided" exactly what type of cell to become in the body, an advantage when treating a disease where one specific cell type is at risk. A patient with Parkinson’s disease, for example, may only needs to replace dopamine-producing neurons, while in patients with multiple sclerosis, only cells that produce myelin need be restored.

Since committed progenitor cell normally can divide for only a limited number of times, until now scientists have been unable to produce enough to make a difference clinically. Goldman’s team solved the problem by introducing the gene for telomerase at just the right moment in the cell’s lifetime, when it has committed to a particular spinal cell type, thus immortalizing the cells at this key juncture. The result was a line of immortal progenitor cells giving rise only to human spinal neurons, including both motor neurons and interneurons, two of the most clinically important cell types of the spinal cord.

"The progenitor cells are immortalized at a stage when they only give rise to the type of neuron we want, thus becoming an ongoing source of these neurons," says Goldman, who is professor of Neurology and chief of the department’s Division of Cell and Gene Therapy.

Goldman’s team propagated these cells for over two years, the longest anyone has ever maintained such a line of neuronal progenitor cells. With these select neurons in hand, Goldman’s colleagues, led by Maiken Nedergaard, M.D., Ph.D., professor of Neurosurgery, then injected the modified progenitors into rats and found that the cells replaced damaged parts of the spinal cord with new nerve cells.

A key finding was the lack of tumors, or any tendency toward tumor growth, says Goldman. Telomerase is one of the ingredients that cancer cells needs to survive, and previous work had indicated that turning the gene for telomerase on could heighten the risk of tumors. But the group followed the rats closely for six months, and the cells in the laboratory for two years, and found no increase in tumors or a tendency to develop into tumors. After about a month, the cells in the animals stopped proliferating, as neurons in the spinal cord normally do.

Since the spinal cord is made up of several types of neurons, the group now is creating and working with other cells that would create other types of neurons necessary to repair spinal cord tissue.

"This work is the culmination of six years of work, and it will be many more years before an approach like this can be tried in human patients. But the promise is extraordinary," says Goldman, whose project was funded by Project ALS and the Christopher Reeve Paralysis Foundation.


From Rochester, other authors include Martha Windrem, Ph.D. Other authors include Neeta Roy, Takahiro Nakano, H. Michael Keyoung, William Rashbaum, M. Lita Alonso, Jian Kang, Weiguo Peng, and Jane Lin of Cornell, and Melissa Carpenter of Geron Corp., who is now at the Robarts Research Institute in Canada.

Tom Rickey | EurekAlert!
Further information:
http://www.urmc.rochester.edu/

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>