Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neurologists create a font of human nerve cells

16.02.2004


Scientists have created an unlimited supply of a type of nerve cell found in the spinal cord – a self-renewing cell line that offers a limitless supply of human nerve cells in the laboratory. Such a supply has long been one goal of neurologists anxious to replace dead or dying cells with healthy ones in a host of neurological diseases.



In this study, appearing in the March issue of Nature Biotechnology, the scientists then used the cells to partially repair damaged spinal cords in laboratory animals, re-growing small sections of the spinal cord that had been damaged. Doctors emphasize that tests in people with damaged spinal cords or other neurological conditions are a long ways off.

The researchers, led by neurologist Steven Goldman, M.D., Ph.D., of the University of Rochester Medical Center, created the unique cells by introducing a gene called telomerase, which is responsible for the ability of stem cells to live indefinitely, into more specialized "progenitor" cells. In normal development, these progenitor cells give rise to very specific types of spinal neurons, but they do so for only short periods of time, because they lack the ability to continuously divide. With the newly added telomerase gene, the spinal progenitor cells were able to continuously divide while still producing only specific types of neurons. The outcome was a line of immortal progenitor cells, capable of churning out human spinal neurons indefinitely.


While stem cells receive a great deal of attention as a possible source of life-saving treatments, progenitor cells offer great potential, Goldman says. To be sure, progenitor cells lack a key feature of stem cells: Their potential to become nearly any type of cell. But what progenitor cells lack in potential, they make up for with commitment: They have already "decided" exactly what type of cell to become in the body, an advantage when treating a disease where one specific cell type is at risk. A patient with Parkinson’s disease, for example, may only needs to replace dopamine-producing neurons, while in patients with multiple sclerosis, only cells that produce myelin need be restored.

Since committed progenitor cell normally can divide for only a limited number of times, until now scientists have been unable to produce enough to make a difference clinically. Goldman’s team solved the problem by introducing the gene for telomerase at just the right moment in the cell’s lifetime, when it has committed to a particular spinal cell type, thus immortalizing the cells at this key juncture. The result was a line of immortal progenitor cells giving rise only to human spinal neurons, including both motor neurons and interneurons, two of the most clinically important cell types of the spinal cord.

"The progenitor cells are immortalized at a stage when they only give rise to the type of neuron we want, thus becoming an ongoing source of these neurons," says Goldman, who is professor of Neurology and chief of the department’s Division of Cell and Gene Therapy.

Goldman’s team propagated these cells for over two years, the longest anyone has ever maintained such a line of neuronal progenitor cells. With these select neurons in hand, Goldman’s colleagues, led by Maiken Nedergaard, M.D., Ph.D., professor of Neurosurgery, then injected the modified progenitors into rats and found that the cells replaced damaged parts of the spinal cord with new nerve cells.

A key finding was the lack of tumors, or any tendency toward tumor growth, says Goldman. Telomerase is one of the ingredients that cancer cells needs to survive, and previous work had indicated that turning the gene for telomerase on could heighten the risk of tumors. But the group followed the rats closely for six months, and the cells in the laboratory for two years, and found no increase in tumors or a tendency to develop into tumors. After about a month, the cells in the animals stopped proliferating, as neurons in the spinal cord normally do.

Since the spinal cord is made up of several types of neurons, the group now is creating and working with other cells that would create other types of neurons necessary to repair spinal cord tissue.

"This work is the culmination of six years of work, and it will be many more years before an approach like this can be tried in human patients. But the promise is extraordinary," says Goldman, whose project was funded by Project ALS and the Christopher Reeve Paralysis Foundation.


From Rochester, other authors include Martha Windrem, Ph.D. Other authors include Neeta Roy, Takahiro Nakano, H. Michael Keyoung, William Rashbaum, M. Lita Alonso, Jian Kang, Weiguo Peng, and Jane Lin of Cornell, and Melissa Carpenter of Geron Corp., who is now at the Robarts Research Institute in Canada.

Tom Rickey | EurekAlert!
Further information:
http://www.urmc.rochester.edu/

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>