Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European researchers launch 10 million Euro collaborative technology project

12.02.2004


European researchers launch 10 million Euro collaborative technology project: EMBL-Hamburg coordinates a four-year integrated research project within the 6th Framework Programme of the European Commission:



The European Commission has given Europe a huge boost in the field of Structural Genomics, awarding the European Molecular Biology Laboratory (EMBL) and its partners 10 Million Euro for an integrated project called “BIOXHIT.” The project aims to create a common platform throughout Europe for researchers working in the field of “biological crystallography.”

BIOXHIT stands for “Biocrystallography on a Highly Integrated Technology Platform” for European Structural Genomics. The goal is to take the best of current technologies at major European centres for research in structural biology, develop them further and weave them into a single platform that integrates and standardises the best of current technology, and spread it throughout Europe.


EMBL-Hamburg will coordinate the integrated project, which unites over twenty partners from nine European countries, including all European synchrotrons. BIOXHIT combines a strongly focused research programme with networking, training and mobility of staff under a single and efficient management structure.

Biological crystallography aims to create precise, three-dimensional “architectural” models of biological molecules. Without such models at hand, it is close to impossible to understand biological processes, for instance the way proteins and other molecules behave in cells, or to design new drugs that will affect their functions. The most common method for obtaining such three-dimensional models is to bombard crystallised proteins with high-powered X-rays generated at huge synchrotron facilities.

“We already have all the single components necessary to solve molecular structures,” says Victor Lamzin, grant coordinator at EMBL-Hamburg. “We have synchrotrons, we can grow protein crystals, we have the software components and we can obtain structures. But the tools we use were not originally designed for high-throughput work. This is what is needed now because of the tens of thousands of new molecules we have discovered in the many genome sequencing projects. Each step of three-dimensional analysis is at a different state at each facility. With this major grant, the Commission strives to support the development and the integration of the best technology at each step, and then spread that across all of the sites.”

Several new European synchrotrons, now on the drawing board or under construction, are scheduled to go on line by 2006 or 2007. BIOXHIT calls for them to begin using the platform from their first day of operations.

One immediate effect of BIOXHIT will be a significant reduction in the time involved in obtaining each structure. Robots, for example, can perform tasks automatically, quickly, and at a consistent and high precision, replacing time-consuming manual steps. The project specifically calls for improvements in the process by which samples are handled, the equipment needed to detect X-ray patterns, and the computers and software needed to model structures. A result of this will be to attract more researchers to work on protein structures.

“Biocrystallography used to be a field for specialists,” Lamzin says, “but today, researchers from all walks of biology want to solve molecular structures at the synchrotrons. The new platform will make this process very user-friendly; it will even allow them to send us their samples and work remotely, from their own institutions.”

“This grant from the EC will definitely make Europe a substantial player in this area,” Lamzin notes. “As well as uniting technologies, BIOXHIT will unite other European and national activities into one strong European alliance, giving us the strength to be a major competitor in Structural Genomics on a global scale. Similar initiatives are already underway in the US and Japan, our two main competitors in this area.”

Training activities are a cornerstone of the project. A number of Training, Implementation and Dissemination centres will be created outside the participating laboratories to disseminate the know-how. A proactive training effort will take place at synchrotron facilities, and then be spread to satellite centres to disseminate biocrystallography technologies to local European communities.

Trista Dawson | EMBL
Further information:
http://www.embl-heidelberg.de/ExternalInfo/oipa/pr2004/pr120204.pdf

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>