Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European researchers launch 10 million Euro collaborative technology project

12.02.2004


European researchers launch 10 million Euro collaborative technology project: EMBL-Hamburg coordinates a four-year integrated research project within the 6th Framework Programme of the European Commission:



The European Commission has given Europe a huge boost in the field of Structural Genomics, awarding the European Molecular Biology Laboratory (EMBL) and its partners 10 Million Euro for an integrated project called “BIOXHIT.” The project aims to create a common platform throughout Europe for researchers working in the field of “biological crystallography.”

BIOXHIT stands for “Biocrystallography on a Highly Integrated Technology Platform” for European Structural Genomics. The goal is to take the best of current technologies at major European centres for research in structural biology, develop them further and weave them into a single platform that integrates and standardises the best of current technology, and spread it throughout Europe.


EMBL-Hamburg will coordinate the integrated project, which unites over twenty partners from nine European countries, including all European synchrotrons. BIOXHIT combines a strongly focused research programme with networking, training and mobility of staff under a single and efficient management structure.

Biological crystallography aims to create precise, three-dimensional “architectural” models of biological molecules. Without such models at hand, it is close to impossible to understand biological processes, for instance the way proteins and other molecules behave in cells, or to design new drugs that will affect their functions. The most common method for obtaining such three-dimensional models is to bombard crystallised proteins with high-powered X-rays generated at huge synchrotron facilities.

“We already have all the single components necessary to solve molecular structures,” says Victor Lamzin, grant coordinator at EMBL-Hamburg. “We have synchrotrons, we can grow protein crystals, we have the software components and we can obtain structures. But the tools we use were not originally designed for high-throughput work. This is what is needed now because of the tens of thousands of new molecules we have discovered in the many genome sequencing projects. Each step of three-dimensional analysis is at a different state at each facility. With this major grant, the Commission strives to support the development and the integration of the best technology at each step, and then spread that across all of the sites.”

Several new European synchrotrons, now on the drawing board or under construction, are scheduled to go on line by 2006 or 2007. BIOXHIT calls for them to begin using the platform from their first day of operations.

One immediate effect of BIOXHIT will be a significant reduction in the time involved in obtaining each structure. Robots, for example, can perform tasks automatically, quickly, and at a consistent and high precision, replacing time-consuming manual steps. The project specifically calls for improvements in the process by which samples are handled, the equipment needed to detect X-ray patterns, and the computers and software needed to model structures. A result of this will be to attract more researchers to work on protein structures.

“Biocrystallography used to be a field for specialists,” Lamzin says, “but today, researchers from all walks of biology want to solve molecular structures at the synchrotrons. The new platform will make this process very user-friendly; it will even allow them to send us their samples and work remotely, from their own institutions.”

“This grant from the EC will definitely make Europe a substantial player in this area,” Lamzin notes. “As well as uniting technologies, BIOXHIT will unite other European and national activities into one strong European alliance, giving us the strength to be a major competitor in Structural Genomics on a global scale. Similar initiatives are already underway in the US and Japan, our two main competitors in this area.”

Training activities are a cornerstone of the project. A number of Training, Implementation and Dissemination centres will be created outside the participating laboratories to disseminate the know-how. A proactive training effort will take place at synchrotron facilities, and then be spread to satellite centres to disseminate biocrystallography technologies to local European communities.

Trista Dawson | EMBL
Further information:
http://www.embl-heidelberg.de/ExternalInfo/oipa/pr2004/pr120204.pdf

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>