Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano-origami

12.02.2004


Scientists at Scripps research create single, clonable strand of DNA that folds into an octahedron



A group of scientists at The Scripps Research Institute has designed, constructed, and imaged a single strand of DNA that spontaneously folds into a highly rigid, nanoscale octahedron that is several million times smaller than the length of a standard ruler and about the size of several other common biological structures, such as a small virus or a cellular ribosome.

Making the octahedron from a single strand was a breakthrough. Because of this, the structure can be amplified with the standard tools of molecular biology and can easily be cloned, replicated, amplified, evolved, and adapted for various applications. This process also has the potential to be scaled up so that large amounts of uniform DNA nanomaterials can be produced. These octahedra are potential building blocks for future projects, from new tools for basic biomedical science to the tiny computers of tomorrow.


"Now we have biological control, and not just synthetic chemical control, over the production of rigid, wireframe DNA objects," says Research Associate William Shih, Ph.D., of Scripps Research.

Shih led the research, described in the latest issue of the journal Nature, with Professor Gerald Joyce, M.D., Ph.D., of the Department of Molecular Biology and The Skaggs Institute for Chemical Biology at Scripps Research.

Compartments and Scaffolds on the Nano-Scale

Similar to a piece of paper folded into an origami box, the strand of DNA that Shih and Joyce designed folds into a compact octahedron -- a structure consisting of twelve edges, six vertices, and eight triangular faces. The structure is about 22 nanometers in overall diameter.

These miniscule octahedral structures are the culmination of a design process that started one day when Shih was building a number of shapes with flexible ball and stick models in the laboratory. This exercise attracted his attention to an important structural principle: frames built with triangular faces are rigid, while cubes and other frames built with non-triangular faces are easily deformed.

Translating this principle to a scale over a million times smaller, Shih sought to design a DNA sequence that would fold into a triangle-faced, and therefore very rigid, object. Shih and Joyce settled on trying to build an octahedron.

Shih and Joyce constructed a 1669-nucleotide strand of DNA that they designed to have a number of self-complementary regions, which would induce the strand to fold back on itself to form a sturdy octahedron. Folding the DNA into the octahedral structures simply required the heating and then cooling of solutions containing the DNA, magnesium ions, and a few accessory molecules. And, indeed, the DNA spontaneously folded into the target structure.

The researchers used cryoelectron microscopy, in collaboration with Research Assistant Joel Quispe of the Scripps Research Automated Molecular Imaging Group, to take two-dimensional snapshots of the octahedral structures. Significantly, the structures were highly uniform in shape -- uniform enough, in fact, to allow the reconstruction of the three-dimensional structure by computational averaging of the individual particle images.

Potential Applications

Shih and Joyce note that because all twelve edges of the octahedral structures have unique sequences, they are versatile molecular building blocks that could potentially be used to self-assemble complex higher-order structures.

Possible applications include using these octahedra as artificial compartments into which proteins or other molecules could be inserted -- something Joyce likens to a virus in reverse, since in nature, viruses are self-assembling nanostructures that typically have proteins on the outside and DNA or RNA on the inside.

"With this," says Joyce, "you could in principle have DNA on the outside and proteins on the inside."

The DNA octahedra could possibly form scaffolds that host proteins for the purposes of x-ray crystallography, which depends on growing well-ordered crystals composed of arrays of molecules.

Another potential application is in the area of electronics and computing. Computers, which rely on the movement and storage of charges, can potentially be built with nano-scale transistors, but one of the big challenges to accomplishing this is organizing these components into integrated circuits. Structures like the ones that Shih and Joyce have developed might someday guide the assembly of nanoscale circuits that extend computing performance beyond the limits set by silicon integrated circuit technology.



The article, "A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron" was authored by William M. Shih, Joel D. Quispe, and Gerald F. Joyce and appears in the February 12, 2004 issue of the journal Nature.

This work was supported by the National Aeronautics and Space Administration, The Skaggs Institute for Research, the National Institutes of Health through the National Center for Research Resources, and through a Damon Runyon Cancer Research Foundation fellowship.

About The Scripps Research Institute

The Scripps Research Institute in La Jolla, California, is one of the world’s largest, private, non-profit biomedical research organizations. It stands at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its research into immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune diseases, cardiovascular diseases and synthetic vaccine development.

Keith McKeown | EurekAlert
Further information:
http://www.scripps.edu/

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

More genes are active in high-performance maize

19.01.2018 | Life Sciences

How plants see light

19.01.2018 | Life Sciences

Artificial agent designs quantum experiments

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>