Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:




Scientists at Scripps research create single, clonable strand of DNA that folds into an octahedron

A group of scientists at The Scripps Research Institute has designed, constructed, and imaged a single strand of DNA that spontaneously folds into a highly rigid, nanoscale octahedron that is several million times smaller than the length of a standard ruler and about the size of several other common biological structures, such as a small virus or a cellular ribosome.

Making the octahedron from a single strand was a breakthrough. Because of this, the structure can be amplified with the standard tools of molecular biology and can easily be cloned, replicated, amplified, evolved, and adapted for various applications. This process also has the potential to be scaled up so that large amounts of uniform DNA nanomaterials can be produced. These octahedra are potential building blocks for future projects, from new tools for basic biomedical science to the tiny computers of tomorrow.

"Now we have biological control, and not just synthetic chemical control, over the production of rigid, wireframe DNA objects," says Research Associate William Shih, Ph.D., of Scripps Research.

Shih led the research, described in the latest issue of the journal Nature, with Professor Gerald Joyce, M.D., Ph.D., of the Department of Molecular Biology and The Skaggs Institute for Chemical Biology at Scripps Research.

Compartments and Scaffolds on the Nano-Scale

Similar to a piece of paper folded into an origami box, the strand of DNA that Shih and Joyce designed folds into a compact octahedron -- a structure consisting of twelve edges, six vertices, and eight triangular faces. The structure is about 22 nanometers in overall diameter.

These miniscule octahedral structures are the culmination of a design process that started one day when Shih was building a number of shapes with flexible ball and stick models in the laboratory. This exercise attracted his attention to an important structural principle: frames built with triangular faces are rigid, while cubes and other frames built with non-triangular faces are easily deformed.

Translating this principle to a scale over a million times smaller, Shih sought to design a DNA sequence that would fold into a triangle-faced, and therefore very rigid, object. Shih and Joyce settled on trying to build an octahedron.

Shih and Joyce constructed a 1669-nucleotide strand of DNA that they designed to have a number of self-complementary regions, which would induce the strand to fold back on itself to form a sturdy octahedron. Folding the DNA into the octahedral structures simply required the heating and then cooling of solutions containing the DNA, magnesium ions, and a few accessory molecules. And, indeed, the DNA spontaneously folded into the target structure.

The researchers used cryoelectron microscopy, in collaboration with Research Assistant Joel Quispe of the Scripps Research Automated Molecular Imaging Group, to take two-dimensional snapshots of the octahedral structures. Significantly, the structures were highly uniform in shape -- uniform enough, in fact, to allow the reconstruction of the three-dimensional structure by computational averaging of the individual particle images.

Potential Applications

Shih and Joyce note that because all twelve edges of the octahedral structures have unique sequences, they are versatile molecular building blocks that could potentially be used to self-assemble complex higher-order structures.

Possible applications include using these octahedra as artificial compartments into which proteins or other molecules could be inserted -- something Joyce likens to a virus in reverse, since in nature, viruses are self-assembling nanostructures that typically have proteins on the outside and DNA or RNA on the inside.

"With this," says Joyce, "you could in principle have DNA on the outside and proteins on the inside."

The DNA octahedra could possibly form scaffolds that host proteins for the purposes of x-ray crystallography, which depends on growing well-ordered crystals composed of arrays of molecules.

Another potential application is in the area of electronics and computing. Computers, which rely on the movement and storage of charges, can potentially be built with nano-scale transistors, but one of the big challenges to accomplishing this is organizing these components into integrated circuits. Structures like the ones that Shih and Joyce have developed might someday guide the assembly of nanoscale circuits that extend computing performance beyond the limits set by silicon integrated circuit technology.

The article, "A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron" was authored by William M. Shih, Joel D. Quispe, and Gerald F. Joyce and appears in the February 12, 2004 issue of the journal Nature.

This work was supported by the National Aeronautics and Space Administration, The Skaggs Institute for Research, the National Institutes of Health through the National Center for Research Resources, and through a Damon Runyon Cancer Research Foundation fellowship.

About The Scripps Research Institute

The Scripps Research Institute in La Jolla, California, is one of the world’s largest, private, non-profit biomedical research organizations. It stands at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its research into immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune diseases, cardiovascular diseases and synthetic vaccine development.

Keith McKeown | EurekAlert
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>