Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Steroid-Coated DNA Represents New Approach to Gene DeliverySteroid-Coated DNA Represents New Approach to Gene Delivery

12.02.2004


Coating DNA with a topical steroid might make for more effective therapeutic gene delivery, according to bioengineers at the University of Pennsylvania. The researchers have shown that a common anti-inflammatory steroid, wrapped around a strand of DNA, can prevent the immune responses commonly associated with gene-transfer techniques.



Studies of the technique, performed in animal models, are presented in the Feb. 15 issue of the journal Gene Therapy, available online now.

"The steroid coating not only allows the gene to be taken up into a cell more easily, but the steroid itself also prevents the sort of inflammatory immune response seen in gene transfer therapy," said Scott Diamond, senior author and professor of bioengineering at Penn and associate director of Penn Institute for Medicine and Engineering. "The concept paves the way to coupling therapeutic gene delivery with a pharamacological agent, an approach that mitigates some of the drawbacks to the gene-delivery techniques in use now."


Currently there are two basic approaches to delivering therapeutic genes: nonviral and viral. Injecting a subject with pure DNA is possible, but a DNA molecule, by itself, has inherent trouble in entering cells. Viral carriers can serve as delivery vehicles for DNA, literally infecting cells with new genes. Both methods, however, are associated with the creation of inflammatory immune responses that reduces the action of the therapeutic gene.

DNA is a large and negatively charged molecule, which is the source of the stumbling point in getting cells to take up DNA. To counter the negative charge of DNA, Diamond and his colleagues took a common steroid, dexamethasone, and made it tickyby adding a nitrogen-rich, postively charged tail. This tail provides the glue that attaches the steroid to the naked DNA.

"The steroid is a fatty lipid so, in essense, we have greased up DNA for cellular uptake," Diamond said, "Plus the cells get a big dose of steroid."

According to Diamond, the chemistry involved in manufacturing this new steroid vehicle is a fairly straightforward, one-step process that is simple compared to creating viral gene therapy vectors.

"But this is more than just ene therapy on steroids," Diamond said. "The dexmethasone not only eased inflammation in an animal model, but, as our study showed, actually allowed the cells to use the foreign DNA more effectively."

In addition, corticosteroids can suppress the major inflammatory cytokines created by the immune response after gene delivery. According to studies in cell culture and animal models, the steroid-coated DNA showed lower initial inflammation and greater expression of the gene over time. The results have encouraged the researchers to continue studies and to envision broader application of the technique toward diseases that might also benefit from gene-transfer therapy.

"In humans, especially in inflamatory diseases, a steroid coating would greatly enhance the chances of successful gene transfer," Diamond said. "As an alternative, I could foresee the use of this coating technique to tailor therapies by choosing drugs that would amplify the benefit of a particular therapeutic gene."

Funding for this research was supported by grants from the National Institutes of Health and the Cystic Fibrosis Foundation.

Greg Lester | University of Pennsylvania
Further information:
http://www.upenn.edu/pennnews/article.php?id=586

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

Smart Computers

21.08.2017 | Information Technology

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>