Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Steroid-Coated DNA Represents New Approach to Gene DeliverySteroid-Coated DNA Represents New Approach to Gene Delivery

12.02.2004


Coating DNA with a topical steroid might make for more effective therapeutic gene delivery, according to bioengineers at the University of Pennsylvania. The researchers have shown that a common anti-inflammatory steroid, wrapped around a strand of DNA, can prevent the immune responses commonly associated with gene-transfer techniques.



Studies of the technique, performed in animal models, are presented in the Feb. 15 issue of the journal Gene Therapy, available online now.

"The steroid coating not only allows the gene to be taken up into a cell more easily, but the steroid itself also prevents the sort of inflammatory immune response seen in gene transfer therapy," said Scott Diamond, senior author and professor of bioengineering at Penn and associate director of Penn Institute for Medicine and Engineering. "The concept paves the way to coupling therapeutic gene delivery with a pharamacological agent, an approach that mitigates some of the drawbacks to the gene-delivery techniques in use now."


Currently there are two basic approaches to delivering therapeutic genes: nonviral and viral. Injecting a subject with pure DNA is possible, but a DNA molecule, by itself, has inherent trouble in entering cells. Viral carriers can serve as delivery vehicles for DNA, literally infecting cells with new genes. Both methods, however, are associated with the creation of inflammatory immune responses that reduces the action of the therapeutic gene.

DNA is a large and negatively charged molecule, which is the source of the stumbling point in getting cells to take up DNA. To counter the negative charge of DNA, Diamond and his colleagues took a common steroid, dexamethasone, and made it tickyby adding a nitrogen-rich, postively charged tail. This tail provides the glue that attaches the steroid to the naked DNA.

"The steroid is a fatty lipid so, in essense, we have greased up DNA for cellular uptake," Diamond said, "Plus the cells get a big dose of steroid."

According to Diamond, the chemistry involved in manufacturing this new steroid vehicle is a fairly straightforward, one-step process that is simple compared to creating viral gene therapy vectors.

"But this is more than just ene therapy on steroids," Diamond said. "The dexmethasone not only eased inflammation in an animal model, but, as our study showed, actually allowed the cells to use the foreign DNA more effectively."

In addition, corticosteroids can suppress the major inflammatory cytokines created by the immune response after gene delivery. According to studies in cell culture and animal models, the steroid-coated DNA showed lower initial inflammation and greater expression of the gene over time. The results have encouraged the researchers to continue studies and to envision broader application of the technique toward diseases that might also benefit from gene-transfer therapy.

"In humans, especially in inflamatory diseases, a steroid coating would greatly enhance the chances of successful gene transfer," Diamond said. "As an alternative, I could foresee the use of this coating technique to tailor therapies by choosing drugs that would amplify the benefit of a particular therapeutic gene."

Funding for this research was supported by grants from the National Institutes of Health and the Cystic Fibrosis Foundation.

Greg Lester | University of Pennsylvania
Further information:
http://www.upenn.edu/pennnews/article.php?id=586

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>