Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making of mouse marks move toward ’mitochondrial medicine’

10.02.2004


There sits in most mammalian cells what amounts to a lock-box of DNA tucked away from the bulk of genetic material. While scientists routinely cut and paste snippets of life’s blueprint to learn more about life and to treat disease, crucial DNA within cellular structures known as mitochondria has remained off-limits.



That’s beginning to change, though, thanks in part to work described in the Feb. 10 issue of the Proceedings of the National Academy of Sciences by a team from the University of Rochester Medical Center and the University of Melbourne in Australia. Scientists created a new kind of mouse by replacing the genetic material in the mitochondria of one species with that from another in a gene-swapping exercise necessary if doctors are to understand several currently untreatable human diseases.

"What we call mitochondrial medicine – how specific mitochondrial mutations and deficiencies lead to disease – didn’t even exist 15 years ago. Now the field is in its infancy. The ultimate goal is improved treatment for people with disorders that currently can’t be treated," says Carl A. Pinkert, Ph.D., of the Center for Aging and Developmental Biology at Rochester, who led the Rochester team.


The creation of the new kind of mouse is the result of several years of painstaking research by two groups of scientists working together across the globe. The work marks one of the most successful forays yet into the manipulation of DNA in the mitochondria, cellular structures that play a vital role in creating energy that power cells.

"We used an approach that had a high risk of failure, but one that will now provide exciting new insights into how mitochondrial genes may affect the way common diseases express themselves," says Ian Trounce of the University of Melbourne in Australia, whose team did much of the laboratory work.

Just as last summer’s blackout in the Northeast touched nearly every aspect of life on a societal scale, so too does trouble with the cell’s powerhouse, the mitochondrion, touch upon scores of diseases. In many diseases that become more common as people age – from infertility and diabetes to cancer, Alzheimer’s and Parkinson’s diseases – faltering mitochondria are known to play a role. And the cellular machinery is at the heart of several less common inherited diseases that affect patients more drastically at a younger age. When a cell’s mitochondria fail, the massive power loss not only injures or kills the cell but can even lead to organ failure or death.

For technical reasons, the tiny bit of genetic code carried inside the mitochondria – just 37 genes out of tens of thousands of genes overall in humans – has remained largely off limits to researchers. After all, most cells have anywhere from a few hundred to a few thousand mitochondria, compared to just one nucleus, making the nucleus the easiest and most likely target for manipulation.

"We’ve had the ability to modify genes in the nucleus for more than 20 years," says Pinkert, "but it’s technologically more challenging to change mitochondrial DNA. It’s difficult to isolate and change mitochondria in large numbers without doing major damage to the cell."

Pinkert and Trounce teamed up to tackle the problem. In the research described in the PNAS paper, they started out with 1,136 mouse embryos into which they injected stem cells containing mitochondria from another mouse species. Ultimately, after another generation of breeding, the team ended up with just six "germ-line" offspring containing only the introduced mitochondria – in effect, "transplanted" mitochondria from another species. All six were males; just three lived longer than one day.

"While we’re pleased with the success we did have, we have a lot of work ahead of us to figure out why the numbers are so low," says Pinkert, professor of pathology and laboratory medicine, who was attracted to the university three years ago by a thriving community of researchers focusing on genetic engineering and mitochondrial biology. "It’s important to work this out, if we are to develop models of disease that will allow us to create new strategies and therapies for patients with incurable metabolic diseases affected by mitochondrial function."


Much of the research in Trounce’s laboratory was done by Matthew McKenzie, a former graduate student at the University of Melbourne who is now at University College in London; in Pinkert’s laboratory in Rochester, technical associate Carolyn Cassar contributed to the project. The work was funded by the National Institutes of Health and the Medical Research Council of Australia.

Tom Rickey | EurekAlert!
Further information:
http://www.urmc.rochester.edu/

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>