Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers pinpoint brain areas that process reality, illusion

10.02.2004


Marvin Gaye wailed in the ’60s hit "Heard it through the Grapevine" that we’re supposed to believe just half of what we see.


Dan Moran



Biomedical engineer Daniel Moran, Ph.D., and University of Pittsburgh researchers, have identified areas of the brain where reality and illusion are processed. For instance, the first time you don a new pair of bifocals, there is a difference in what you percieve visually and what your hand does when you reach for something. With time, though, the brain adjusts so that vision and action become one. The ventral premotor complex plays a major role in that process.

But a new collaborative study involving a biomedical engineer at Washington University in St. Louis and neurobiologists at the University of Pittsburgh shows that sometimes you can’t believe anything that you see. More importantly, the researchers have identified areas of the brain where what we’re actually doing (reality) and what we think we’re doing (illusion, or perception) are processed.


Daniel Moran, Ph.D., Washington University assistant professor of biomedical engineering and neurobiology, and University of Pittsburgh colleagues Andrew B. Schwartz, Ph.D., and G. Anthony Reina, M.D., focused on studying perception and playing visual tricks on macaque monkeys and some human subjects. They created a virtual reality video game to trick the monkeys into thinking that they were tracing ellipses with their hands, though they actually were moving their hands in a circle.

They monitored nerve cells in the monkeys enabling them to see what areas of the brain represented the circle and which areas represented the ellipse. They found that the primary motor cortex represented the actual movement while the signals from cells in a neighboring area, called the ventral premotor cortex, were generating elliptical shapes.

Monkey thought it saw, then monkey didn’t do.

The research shows how the mind creates its sense of order in the world and then adjusts on the fly to eliminate distortions.

For instance, the first time you don a new pair of bifocals, there is a difference in what you perceive visually and what your hand does when you go to reach for something. With time, though, the brain adjusts so that vision and action become one. The ventral premotor complex plays a major role in that process.

Knowing how the brain works to distinguish between action and perception will enhance efforts to build biomedical devices that can control artificial limbs, some day enabling the disabled to move a prosthetic arm or leg by thinking about it.

Results were published in the Jan. 16, 2004 issue of Science.

"Previous studies have explored when things are perceived during an illusion, but this is the first study to show what is being perceived instead of when it is happening," said Moran. "People didn’t know how it was encoded. And we also find that the brain areas involved are right next to each other."

The researchers next plan to record and determine how the transformation takes place by recording in both areas simultaneously.

"We might let the monkeys know that they are making a mistake and see how they rectify that. What I think is most interesting involves motor learning. We want to see how the brain learns and adapts its encoding parameters to account for visual illusions."

Tony Fitzpatrick | WUSTL
Further information:
http://news-info.wustl.edu/tips/page/normal/652.html

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>