Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Adapt RNA Interference to Study Gene Function on a Large Scale

06.02.2004


A method for determining the function of large numbers of genes is being developed and piloted by Howard Hughes Medical Institute (HHMI) researchers at Harvard Medical School. In a trial of the technique, the researchers characterized the role in growth and viability of nearly all the genes in the genome of the fruit fly Drosophila.



Although the fruit fly genome was chosen for the first study, the researchers are confident that their technique can be applied to any organism, including humans. “A major challenge now that many genome sequences have been determined, is to extract meaningful functional information from those projects,” said HHMI researcher Norbert Perrimon, who directed the study. “While there are a number of analytical approaches that can measure the level of gene expression or the interaction between proteins, ours is really the first high-throughput, full-genome screening method that allows a systematic interrogation of the function of every gene.”

The research team, which included Perrimon and colleagues at Harvard Medical School, the University of Heidelberg and the Max Planck Institute for Molecular Genetics in Germany, described its technique in the February 6, 2004, issue of the journal Science.


The screening technique developed by Perrimon and his colleagues builds on methods developed in one of the hottest areas of biology, RNA interference (RNAi) research. In RNAi, double-stranded RNA (dsRNA) that matches the messenger RNA produced by a given gene degrades that messenger RNA — in effect wiping out the function of that gene in a cell. RNAi is widely used as a research tool to selectively erase the cellular contributions of individual genes to study their function.

In their mass screening technique, Perrimon and his colleagues first created a library of 21,000 dsRNA that corresponded to each of the more than 16,000 genes in the Drosophila genome. They then applied each of these dsRNA molecules to cultures of Drosophila cells and assayed how knocking down the function of a targeted gene affected cell numbers in the cultures. This basic measure, said Perrimon, revealed genes that are not only involved in general cell growth, but also in the cell cycle, cell survival and other such functions.

The researchers then selected 438 genes for further characterization. The degradation of these genes produced profound affects on cell number. “Out of this subset, we found many that produced proteins involved in general metabolic processes such as the ribosomes that are components of the protein synthesis machinery,” said Perrimon. “But we also found genes that are more specific to cell survival.”

According to Perrimon, only 20 percent of the genes that were identified had corresponding mutations — an important characteristic for studying gene function. “The classic approach to studying gene function is to identify mutations in genes and select those that produce interesting phenotypes that yield insight into function,” said Perrimon. “But this approach has never really given us access to the full repertoire of genes. With this high-throughput technology, however, we can study the function of a complete set of genes. We can systematically identify all the genes involving one process.”

The researchers also found that a large proportion of the genes identified in the genome screen do not code for a known protein, “which means that there are a great number of proteins that remain to be identified,” said Perrimon.

Perrimon emphasized that “while in this paper we describe applying this technique only to one specific assay — the effect on cell number — we are already applying the methodology to determine the roles of genes in many other aspects of signal transduction and cell biology. We are using the technique to study gene function in pathways involved in communication between cells and those associated with cancer; as well as aspects of cell biology such as cell shape or cytoskeletal organization.”

Once researchers amass data on gene function from many such assays, said Perrimon, they can begin to group genes according to the signatures of their response in such assays. Such groupings will offer a guide to further biological studies to map the functional cellular protein machinery that the genes produce in living organisms.

“The idea is that with this information we might be able to connect a number of proteins together, implying that they may be working either in the same pathway, or they may be part of the same molecular machine in the cell,” said Perrimon.

The RNAi assay will contribute to the screening of new drugs, he said. “One exciting aspect of this approach is that we can combine our assay with screening of potential therapeutic compounds,” he said. “One of the big problems in the pharmaceutical industry is that researchers may discover pharmacologically active compounds but have no idea what their targets are in the cell. However, it would be possible to perform coordinated screens — one for compounds that interfere with a target pathway and an RNA interference screen for genes that act in that pathway. This correlation would allow you to match the compounds with the proteins they affect in a much more useful way.”

Similarly, said Perrimon, researchers can use RNAi to selectively target genes in cells infected with pathogenic bacteria, to determine which ones affect the bacteria’s ability to infect cells. Such a screen could yield key targets for pathogen-specific antibacterial drugs, he said.

Jim Keeley | HHMI
Further information:
http://www.hhmi.org/news/perrimon2.html

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>