Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing how plants split water could provide key to our future energy needs

05.02.2004


The possibility of using the Earth’s abundant supply of water as a cheap source of hydrogen is a step closer thanks to researchers from Imperial College London. By mimicking the method plants use to split water, researchers say that a highly energy efficient way to form cheap supplies of hydrogen fuel may be possible in the future.



Reporting online in the journal Science today Imperial researchers reveal the fine detail of the protein complex that drives photosynthesis - the process that converts atmospheric carbon dioxide into organic matter and oxygen (O2) by using sunlight to split water (H2O).

Using X-ray crystallography, the researchers describe for the first time the mechanism that underpins the photosynthetic water-splitting reaction. By analysing these findings the researchers believe it may be possible to learn how to recreate the process on an industrial scale, allowing hydrogen to be manufactured as a fuel.


Professor Jim Barber of Imperial’s Department of Biological Sciences explains:

"Without photosynthesis life on Earth would not exist as we know it. Oxygen derived from this process is part of the air we breathe and maintains the ozone layer needed to protect us from UV radiation. Now hydrogen also contained in water could be one of the most promising energy sources for the future. Unlike fossil fuels it’s highly efficient, low polluting and is mobile so it can be used for power generation in remote regions where it’s difficult to access electricity.

"But the problem is hydrogen doesn’t exist on Earth by itself. Instead it combines with other elements such as oxygen to form water, or with carbon to form methane, coal and petroleum. However, water is very stable and for this reason cannot be used directly as a fuel. Researchers have investigated using electrolysis to split water into oxygen and hydrogen but today it costs ten times as much as natural gas, and is three times as expensive as gasoline.

Yet nature figured out how to split water using sunlight in an energy efficient way 2.5 billion years ago. By revealing the structure of the water splitting centre we can begin to unravel how to perform this task in an energy efficient way too."

Photosynthesis occurs in plants, some bacteria and algae and involves two protein complexes, photosystem I, and photosystem II - which contains the water-splitting centre.

While previous models of PSII function have sketched out a picture of how the water splitting centre might be organised, the Imperial team were able to reveal the structure of the centre at a resolution of 3.5 angstroms (or one hundred millionth of a centimetre) in the cyanobacterium, Thermosynechococcus elongatus by combining the expertise of Professor So Iwata in solving protein structures and Professor Jim Barber in the photosynthetic process.

"Results by other groups, including those obtained using lower resolution X-ray crystallography at 3.7 angstroms have shown that the splitting of water occurs at a catalytic centre that consists of four manganese atoms (Mn)," explains Professor So Iwata of Imperial’s Department of Biological Sciences.

"We’ve taken this further by showing that three of the manganese atoms, a calcium atom and four oxygen atoms form a cube like structure, which brings stability to the catalytic centre. The forth and most reactive manganese atom is attached to one of the oxygen atoms of the cube. Together this arrangement gives strong hints about the water-splitting chemistry.

"Our structure also reveals the position of key amino acids, the building blocks of proteins, which provide a details of how cofactors are recruited into the reaction centre."

Professor Barber added: "PSII is truly the ’engine of life’ and it has been a major challenge of modern science to understand how it works. Manufacturing hydrogen from water using the photosynthetic method would be far more efficient than using electrolysis and if we can learn how to use even a fraction of the 326 million cubic miles of water on the planet we can begin to address the world’s pressing need for new and environmentally friendly energy sources."

Judith H Moore | alfa
Further information:
http://www.ic.ac.uk

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>