Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene transfer allows mammals to produce heart-healthy fats

05.02.2004


Study with transgenic mice could lead to omega-3-containing meats, dairy products



Researchers from Massachusetts General Hospital (MGH) have found that tissues from mice transgenic for a gene usually found in the c.elegans roundworm contain omega-3 fatty acids, consumption of which has been shown to protect against heart disease. Usually mammals cannot produce omega-3s from the more abundant omega-6 fatty acids, which do not have the health benefits of omega-3s. The finding, published in the February 5 issue of Nature, could lead to development of omega-3-rich meat, milk and eggs.

Many studies have confirmed that consumption of omega-3s can reduce the incidence and effects of cardiovascular disease for both the general public and those with existing disease. The American Heart Association currently recommends consumption of two or more weekly servings of fish, particularly fatty fish like trout and salmon, which are naturally high in omega 3s.


"Correction of the usually omega-3-deficient Western diet has become a key step toward reducing the risk of several modern diseases," says lead author Jing X. Kang, MD, PhD, of the MGH Department of Medicine. "The current approach to increasing omega-3s in animal food products is to feed livestock with fish meal or other marine products, which is time consuming, costly and limited by the availability of those feeds."

Investigating a potential novel way further to increase omega-3 consumption, the MGH researchers developed a strain of mice that have the c. elegans gene fat-1, which codes for an enzyme that converts omega-6 acids to omega-3s. The transgenic mice appeared perfectly healthy and were raised, along with normal mice, on a diet low in omega-3s.

Tissues from the transgenic mice were found to be high in omega-3 fatty acids, while the tissues from normal mice had fats primarily consisting of omega-6s, as do most mammals. The ability to transmit fat-1 into mammals without losing its effectiveness or causing any apparent harm to the transgenic animals raises the possibility of developing farm animals that naturally produce omega-3 rich food products.

"The obvious followup to our finding would be to create livestock animals transgenic for fat-1 and see if their tissues also contain omega 3s," says Kang, who is an associate professor of Medicine at Harvard Medical School. "This mouse model also will be useful in studies to further investigate impact of the omega 3/omega 6 ratio in disease prevention and treatment. Another possibility to explore would be gene therapy to introduce fat-1 directly into human tissue."


Kang’s co-authors are Jingdong Wang, MS, and Zhao Kang, MD, MGH Medicine, and Lin Wu, PhD, MGH Dermatology. The research was supported by grants from the National Cancer Institute, the American Cancer Society and the American Institute for Cancer Research.

Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $350 million and major research centers in AIDS, cardiovascular research, cancer, cutaneous biology, medical imaging, neurodegenerative disorders, transplantation biology and photomedicine. In 1994, MGH and Brigham and Women’s Hospital joined to form Partners HealthCare System, an integrated health care delivery system comprising the two academic medical centers, specialty and community hospitals, a network of physician groups, and nonacute and home health services.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>