Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene transfer allows mammals to produce heart-healthy fats

05.02.2004


Study with transgenic mice could lead to omega-3-containing meats, dairy products



Researchers from Massachusetts General Hospital (MGH) have found that tissues from mice transgenic for a gene usually found in the c.elegans roundworm contain omega-3 fatty acids, consumption of which has been shown to protect against heart disease. Usually mammals cannot produce omega-3s from the more abundant omega-6 fatty acids, which do not have the health benefits of omega-3s. The finding, published in the February 5 issue of Nature, could lead to development of omega-3-rich meat, milk and eggs.

Many studies have confirmed that consumption of omega-3s can reduce the incidence and effects of cardiovascular disease for both the general public and those with existing disease. The American Heart Association currently recommends consumption of two or more weekly servings of fish, particularly fatty fish like trout and salmon, which are naturally high in omega 3s.


"Correction of the usually omega-3-deficient Western diet has become a key step toward reducing the risk of several modern diseases," says lead author Jing X. Kang, MD, PhD, of the MGH Department of Medicine. "The current approach to increasing omega-3s in animal food products is to feed livestock with fish meal or other marine products, which is time consuming, costly and limited by the availability of those feeds."

Investigating a potential novel way further to increase omega-3 consumption, the MGH researchers developed a strain of mice that have the c. elegans gene fat-1, which codes for an enzyme that converts omega-6 acids to omega-3s. The transgenic mice appeared perfectly healthy and were raised, along with normal mice, on a diet low in omega-3s.

Tissues from the transgenic mice were found to be high in omega-3 fatty acids, while the tissues from normal mice had fats primarily consisting of omega-6s, as do most mammals. The ability to transmit fat-1 into mammals without losing its effectiveness or causing any apparent harm to the transgenic animals raises the possibility of developing farm animals that naturally produce omega-3 rich food products.

"The obvious followup to our finding would be to create livestock animals transgenic for fat-1 and see if their tissues also contain omega 3s," says Kang, who is an associate professor of Medicine at Harvard Medical School. "This mouse model also will be useful in studies to further investigate impact of the omega 3/omega 6 ratio in disease prevention and treatment. Another possibility to explore would be gene therapy to introduce fat-1 directly into human tissue."


Kang’s co-authors are Jingdong Wang, MS, and Zhao Kang, MD, MGH Medicine, and Lin Wu, PhD, MGH Dermatology. The research was supported by grants from the National Cancer Institute, the American Cancer Society and the American Institute for Cancer Research.

Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $350 million and major research centers in AIDS, cardiovascular research, cancer, cutaneous biology, medical imaging, neurodegenerative disorders, transplantation biology and photomedicine. In 1994, MGH and Brigham and Women’s Hospital joined to form Partners HealthCare System, an integrated health care delivery system comprising the two academic medical centers, specialty and community hospitals, a network of physician groups, and nonacute and home health services.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>