Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene transfer allows mammals to produce heart-healthy fats

05.02.2004


Study with transgenic mice could lead to omega-3-containing meats, dairy products



Researchers from Massachusetts General Hospital (MGH) have found that tissues from mice transgenic for a gene usually found in the c.elegans roundworm contain omega-3 fatty acids, consumption of which has been shown to protect against heart disease. Usually mammals cannot produce omega-3s from the more abundant omega-6 fatty acids, which do not have the health benefits of omega-3s. The finding, published in the February 5 issue of Nature, could lead to development of omega-3-rich meat, milk and eggs.

Many studies have confirmed that consumption of omega-3s can reduce the incidence and effects of cardiovascular disease for both the general public and those with existing disease. The American Heart Association currently recommends consumption of two or more weekly servings of fish, particularly fatty fish like trout and salmon, which are naturally high in omega 3s.


"Correction of the usually omega-3-deficient Western diet has become a key step toward reducing the risk of several modern diseases," says lead author Jing X. Kang, MD, PhD, of the MGH Department of Medicine. "The current approach to increasing omega-3s in animal food products is to feed livestock with fish meal or other marine products, which is time consuming, costly and limited by the availability of those feeds."

Investigating a potential novel way further to increase omega-3 consumption, the MGH researchers developed a strain of mice that have the c. elegans gene fat-1, which codes for an enzyme that converts omega-6 acids to omega-3s. The transgenic mice appeared perfectly healthy and were raised, along with normal mice, on a diet low in omega-3s.

Tissues from the transgenic mice were found to be high in omega-3 fatty acids, while the tissues from normal mice had fats primarily consisting of omega-6s, as do most mammals. The ability to transmit fat-1 into mammals without losing its effectiveness or causing any apparent harm to the transgenic animals raises the possibility of developing farm animals that naturally produce omega-3 rich food products.

"The obvious followup to our finding would be to create livestock animals transgenic for fat-1 and see if their tissues also contain omega 3s," says Kang, who is an associate professor of Medicine at Harvard Medical School. "This mouse model also will be useful in studies to further investigate impact of the omega 3/omega 6 ratio in disease prevention and treatment. Another possibility to explore would be gene therapy to introduce fat-1 directly into human tissue."


Kang’s co-authors are Jingdong Wang, MS, and Zhao Kang, MD, MGH Medicine, and Lin Wu, PhD, MGH Dermatology. The research was supported by grants from the National Cancer Institute, the American Cancer Society and the American Institute for Cancer Research.

Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $350 million and major research centers in AIDS, cardiovascular research, cancer, cutaneous biology, medical imaging, neurodegenerative disorders, transplantation biology and photomedicine. In 1994, MGH and Brigham and Women’s Hospital joined to form Partners HealthCare System, an integrated health care delivery system comprising the two academic medical centers, specialty and community hospitals, a network of physician groups, and nonacute and home health services.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>