Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene transfer allows mammals to produce heart-healthy fats

05.02.2004


Study with transgenic mice could lead to omega-3-containing meats, dairy products



Researchers from Massachusetts General Hospital (MGH) have found that tissues from mice transgenic for a gene usually found in the c.elegans roundworm contain omega-3 fatty acids, consumption of which has been shown to protect against heart disease. Usually mammals cannot produce omega-3s from the more abundant omega-6 fatty acids, which do not have the health benefits of omega-3s. The finding, published in the February 5 issue of Nature, could lead to development of omega-3-rich meat, milk and eggs.

Many studies have confirmed that consumption of omega-3s can reduce the incidence and effects of cardiovascular disease for both the general public and those with existing disease. The American Heart Association currently recommends consumption of two or more weekly servings of fish, particularly fatty fish like trout and salmon, which are naturally high in omega 3s.


"Correction of the usually omega-3-deficient Western diet has become a key step toward reducing the risk of several modern diseases," says lead author Jing X. Kang, MD, PhD, of the MGH Department of Medicine. "The current approach to increasing omega-3s in animal food products is to feed livestock with fish meal or other marine products, which is time consuming, costly and limited by the availability of those feeds."

Investigating a potential novel way further to increase omega-3 consumption, the MGH researchers developed a strain of mice that have the c. elegans gene fat-1, which codes for an enzyme that converts omega-6 acids to omega-3s. The transgenic mice appeared perfectly healthy and were raised, along with normal mice, on a diet low in omega-3s.

Tissues from the transgenic mice were found to be high in omega-3 fatty acids, while the tissues from normal mice had fats primarily consisting of omega-6s, as do most mammals. The ability to transmit fat-1 into mammals without losing its effectiveness or causing any apparent harm to the transgenic animals raises the possibility of developing farm animals that naturally produce omega-3 rich food products.

"The obvious followup to our finding would be to create livestock animals transgenic for fat-1 and see if their tissues also contain omega 3s," says Kang, who is an associate professor of Medicine at Harvard Medical School. "This mouse model also will be useful in studies to further investigate impact of the omega 3/omega 6 ratio in disease prevention and treatment. Another possibility to explore would be gene therapy to introduce fat-1 directly into human tissue."


Kang’s co-authors are Jingdong Wang, MS, and Zhao Kang, MD, MGH Medicine, and Lin Wu, PhD, MGH Dermatology. The research was supported by grants from the National Cancer Institute, the American Cancer Society and the American Institute for Cancer Research.

Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $350 million and major research centers in AIDS, cardiovascular research, cancer, cutaneous biology, medical imaging, neurodegenerative disorders, transplantation biology and photomedicine. In 1994, MGH and Brigham and Women’s Hospital joined to form Partners HealthCare System, an integrated health care delivery system comprising the two academic medical centers, specialty and community hospitals, a network of physician groups, and nonacute and home health services.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Life Sciences:

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>