Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers reveal calcium transport protein function that regulates heartbeat frequency, strength

05.02.2004


A membrane protein, NCX1, that transports sodium and calcium into and out of cells, may determine the frequency as well as strength of the heartbeat, researchers at UT Southwestern Medical Center at Dallas report.



The findings are published in today’s issue of Nature.

"This calcium transporter really is an important key to understanding how the heart is regulated," said Dr. Donald Hilgemann, professor of physiology and senior author of the study. "At every beat, calcium in heart cells increases. And it’s calcium that is the messenger to the heart to get it to contract.


"We knew for a long time that NCX1 brings calcium into and out of heart cells by exchanging it for sodium. And in doing so it generates important electrical currents in the heart. The surprise is that this transporter dances more than just that old waltz from Vienna. It knows Salsa!"

The research reveals two new modes of operation of NCX1. First, the membrane protein can move sodium into heart cells without moving calcium out. This mode generates an electrical current independent of calcium transport that contributes to excitation of the heart. The second mode is to move calcium into heart cells without generating any electrical current. This mode, Dr. Hilgemann said, may determine the calcium that remains in heart cells after each beat and thereby determines the strength of cardiac contraction over many beats.

Using so-called "giant membrane patch" techniques together with highly sensitive ion detection techniques, both developed and implemented by Dr. Hilgemann, UT Southwestern researchers were able to determine precisely how NCX1 works as an ion exchanger, how many calcium and sodium ions move across the membrane, when they are exchanged, and, surprisingly, when they move together.

"Transporters move ions across membranes by grabbing hold of them and transferring the energy of one type of ion to another type, just one or a few at a time, backwards and forward, together or in exchange for one another," Dr. Hilgemann said. "This is a much bigger biophysical problem to get a handle on than ion channels. Ion channels, when they are open, let millions of ions slip through them each second. You measure the electrical current, and you know what’s going on."

UT Southwestern researchers over the last three years spearheaded new approaches to measure ion transfer across microscopic patches of membrane, independent of the electrical current. The "giant patch" system is essentially a large piece of cell membrane glued to the end of a glass pipette. This method has been used by numerous groups to study ion transporters and channels that could not be studied with conventional techniques. It can measure the properties of these systems in a millionth of a second, at least 10 times faster than the previous methods.

"Seeing now that NCX1, in some instances, moves an extra calcium or an extra sodium ion lets us predict much better how this system works in the heart and how it affects the function of the heart," Dr. Hilgemann said. "There are many, many more important transporters – many of them involved in human disease – to be studied with this kind of resolution in the kidney, in the pancreas, in the brain, everywhere. NCX1 is just the tip of the iceberg."


In 1997 Dr. Hilgemann was named Young Investigator of the Year by the International Biophysical Society in recognition of his studies of transport systems that move molecules across cell membranes.

Dr. Tong Mook Kang, a former fellow at UT Southwestern who is now at the Sungkyunkwan University School of Medicine in South Korea, is coauthor of the study.

The research was funded by the National Institutes of Health and the Samsung Biomedical Research Institute.

To automatically receive news releases from UT Southwestern via e-mail, subscribe at http://www.utsouthwestern.edu/utsw/cda/dept37326/files/37813.html

Amy Shields | EurekAlert!
Further information:
http://www.swmed.edu/

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Rapid environmental change makes species more vulnerable to extinction

19.10.2017 | Life Sciences

Integrated lab-on-a-chip uses smartphone to quickly detect multiple pathogens

19.10.2017 | Interdisciplinary Research

Fossil coral reefs show sea level rose in bursts during last warming

19.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>