Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers reveal calcium transport protein function that regulates heartbeat frequency, strength

05.02.2004


A membrane protein, NCX1, that transports sodium and calcium into and out of cells, may determine the frequency as well as strength of the heartbeat, researchers at UT Southwestern Medical Center at Dallas report.



The findings are published in today’s issue of Nature.

"This calcium transporter really is an important key to understanding how the heart is regulated," said Dr. Donald Hilgemann, professor of physiology and senior author of the study. "At every beat, calcium in heart cells increases. And it’s calcium that is the messenger to the heart to get it to contract.


"We knew for a long time that NCX1 brings calcium into and out of heart cells by exchanging it for sodium. And in doing so it generates important electrical currents in the heart. The surprise is that this transporter dances more than just that old waltz from Vienna. It knows Salsa!"

The research reveals two new modes of operation of NCX1. First, the membrane protein can move sodium into heart cells without moving calcium out. This mode generates an electrical current independent of calcium transport that contributes to excitation of the heart. The second mode is to move calcium into heart cells without generating any electrical current. This mode, Dr. Hilgemann said, may determine the calcium that remains in heart cells after each beat and thereby determines the strength of cardiac contraction over many beats.

Using so-called "giant membrane patch" techniques together with highly sensitive ion detection techniques, both developed and implemented by Dr. Hilgemann, UT Southwestern researchers were able to determine precisely how NCX1 works as an ion exchanger, how many calcium and sodium ions move across the membrane, when they are exchanged, and, surprisingly, when they move together.

"Transporters move ions across membranes by grabbing hold of them and transferring the energy of one type of ion to another type, just one or a few at a time, backwards and forward, together or in exchange for one another," Dr. Hilgemann said. "This is a much bigger biophysical problem to get a handle on than ion channels. Ion channels, when they are open, let millions of ions slip through them each second. You measure the electrical current, and you know what’s going on."

UT Southwestern researchers over the last three years spearheaded new approaches to measure ion transfer across microscopic patches of membrane, independent of the electrical current. The "giant patch" system is essentially a large piece of cell membrane glued to the end of a glass pipette. This method has been used by numerous groups to study ion transporters and channels that could not be studied with conventional techniques. It can measure the properties of these systems in a millionth of a second, at least 10 times faster than the previous methods.

"Seeing now that NCX1, in some instances, moves an extra calcium or an extra sodium ion lets us predict much better how this system works in the heart and how it affects the function of the heart," Dr. Hilgemann said. "There are many, many more important transporters – many of them involved in human disease – to be studied with this kind of resolution in the kidney, in the pancreas, in the brain, everywhere. NCX1 is just the tip of the iceberg."


In 1997 Dr. Hilgemann was named Young Investigator of the Year by the International Biophysical Society in recognition of his studies of transport systems that move molecules across cell membranes.

Dr. Tong Mook Kang, a former fellow at UT Southwestern who is now at the Sungkyunkwan University School of Medicine in South Korea, is coauthor of the study.

The research was funded by the National Institutes of Health and the Samsung Biomedical Research Institute.

To automatically receive news releases from UT Southwestern via e-mail, subscribe at http://www.utsouthwestern.edu/utsw/cda/dept37326/files/37813.html

Amy Shields | EurekAlert!
Further information:
http://www.swmed.edu/

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>