Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ’bumpy’ jelly found in deep sea

04.02.2004


Stellamedusa ventana photographed during the MBARI 2003 expedition to the Gulf of California.
Image credit: (c) 2003 MBARI


This laboratory photo shows the bumps that give Stellamedusa ventana its common name, "Bumpy." Each bump contains hundreds of stinging cells, which are used for capturing and holding onto prey.
Image credit: Kevin Raskoff (c) 2003 MBARI


Wart-like bumps of stinging cells cover the feeding arms and bell of a newly described deep-sea jelly, published by MBARI biologists in this month’s issue of the Journal of the Marine Biological Association of the United Kingdom. This softball-sized, translucent jelly moves through the water like a shooting star, trailing four fleshy oral arms--but no tentacles--behind it. This and other unique features resulted in the jelly’s categorization as a new genus and species.

The MBARI researchers named the jelly Stellamedusa ventana. Its genus, Stellamedusa, refers to the jelly’s translucent blue-white color and trailing arms, which reminded the scientists of a slow-moving meteor or shooting star. It’s species name, ventana, refers to MBARI’s remotely operated vehicle (ROV) Ventana, a deep-diving submarine robot that first recorded the jelly on video in 1990. Before they created an official name for this animal, researchers gave this jelly the nickname "bumpy" because it’s bell and oral arms are covered with small bumps, which are actually clusters of stinging cells that the jelly uses to capture prey.

Kevin Raskoff, primary author of the paper, says of the new jelly "Although it’s highly unusual for a jelly not to have tentacles, several deep-sea species have evolved this way. They have also evolved unusual feeding strategies, which rely on other parts of their body, such as the bell and oral arms, to capture prey." Formerly a postdoctoral researcher at MBARI, Raskoff now teaches at California State University, Monterey Bay.



MBARI researchers have seen S. ventana only seven times during thirteen years of diving. Five of these observations were in Monterey Bay. The other two occurred during an MBARI expedition to the Gulf of California in spring 2003. According to George Matsumoto, co-author of the paper, "This animal still represents a conundrum. At first we thought it might be just a very rare local species, here in Monterey Bay. Then we saw it twice in the Gulf of California, three thousand miles away. We still have no idea of its true range."

The researchers waited years to publish their discovery of this jelly because they wanted to be able to present information about its habits and distribution, as well as its appearance. As Matsumoto put it, "you need enough observations to understand the natural variations in the animal’s size and shape. We just didn’t have enough information to make any general statements about the animal."

Here is some of what they do know: S. ventana has been observed at depths between 150 and 550 meters (about 500 to 1800 feet), just below the level that sunlight can penetrate, but above a layer of very low oxygen levels. This region is known as the mesopelagic realm, and is the home of entire communities of gelatinous animals. In fact, based on field and lab observations, the researchers believe that this jelly may feed primarily on other jellies.

To study the jelly’s eating habits, the researchers placed a captured jelly in a tank with small shrimp and pieces of squid. The shrimp and squid collided with batteries of stinging cells on the jelly’s bell and stuck there. The prey then moved slowly down to the edge if the bell. At that point, the jelly transferred the prey to one of its oral arms, where it slowly moved up the arm and into the mouth.

Unlike other jellies who capture food with their bells, S. ventana seemed to prefer prey larger than about 2 cm (3/4 inch). In fact, one individual captured in the Gulf of California had in its gut a ctenophore about 5 cm (2 inches) across. Raskoff speculates that the bumps on the jelly’s bell and arms may aid in capturing large pray. "These bumps contain massive batteries of stinging cells, which are good for holding on to prey as well as immobilizing it."

Matsumoto is somewhat surprised that S. ventana has never been described previously or hauled up in nets. "The coast of California is one of the more well-studied parts of the world’s oceans, with two major oceanographic institutions dating from the late 1800s. Yet we are still discovering new species there. Who knows what else we might find?" Raskoff adds, "It’s heartwarming to know that there’s still a lot of mystery in the deep ocean. There are still a lot of big things moving around out there that we don’t know about."

Kim Fulton-Bennett | MBARI
Further information:
http://www.mbari.org/news/news_releases/2004/stellamedusa.html

More articles from Life Sciences:

nachricht Molecular libraries for organic light-emitting diodes
24.04.2017 | Goethe-Universität Frankfurt am Main

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

Research sheds new light on forces that threaten sensitive coastlines

24.04.2017 | Earth Sciences

Making lightweight construction suitable for series production

24.04.2017 | Machine Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>