Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop plant that produces potential anti-carcinogen

04.02.2004


A Purdue University researcher has successfully engineered plants that may not only lead to the production of anti-carcinogenic nutritional supplements, but also may be used to remove excess selenium from agricultural fields.


This photograph shows the presence of two different selenium compounds in living plant tissue. The image on the left shows a high concentration of MSC, the selenium compound shown to have anti-cancer properties, in one of the plant’s leaves. The image on the right highlights a different selenium compound in the same leaf. The image was obtained using a technique called X-ray absorbance spectroscopy, or XAS, to visualize concentrations of selenium. Red indicates regions of high concentration. Blue and green indicate lower concentration. (Images courtesy of Ingrid Pickering, Proceedings of the National Academy of Science, 97(20); p. 107110).



By introducing a gene that makes plants tolerate selenium, David Salt, professor of plant molecular physiology, has developed plants capable of building up in their tissues unusually high levels of a selenium compound. His interest in selenium stems in part from recent research sponsored by the National Institutes of Health showing that selenium can reduce the risk of developing prostate cancer by 60 percent.

"We now know how to genetically modify plants so they will make this anti-carcinogenic selenium compound," Salt said. "This research gives us the genetic means to manipulate the amount of this material that’s produced in any plant."


Selenium, a mineral that occurs naturally in the soil in some parts of the world, is an essential micronutrient for animals, including humans, but is toxic to animals and most plants at high levels.

However, a few plant species have the ability to build up high levels of selenium in their tissues with no ill effects. These plants, called selenium hyper-accumulators, convert selenium taken up from the soil into a non-toxic form called methylselenocysteine, or MSC.

By inserting the gene responsible for this conversion into Arabidopsis thaliana, a model lab plant that does not tolerate selenium, Salt and his colleagues produced plants that not only thrive in a selenium-enriched environment but also amass high levels of the selenium-containing MSC in their tissues.

"We now know that this gene works," Salt said. "If you put it into another plant, it will make MSC, and we didn’t know that before. So now we’re in a comfortable position to say, ’okay, let’s put this gene into a plant that we can use to make into a nutritional supplement, knowing that we have a very, very high likelihood of it working and producing this compound.’"

The plants that naturally hyper-accumulate selenium would not be good candidates for use as a supplement because they often produce other compounds that may have toxic effects in humans, Salt said.

Salt and his colleagues used two different methods to verify the production of MSC in the engineered Arabidopsis. The first method, called mass spectroscopy, relies on extracting compounds from the plant tissue using a variety of solvents, then running those compounds through a type of machine that identifies their chemical nature.

The other method they used is called x-ray absorbance spectroscopy, or XAS. This technique identifies the various forms of selenium in living plant tissue and can also provide a spatial map of where in the plant these selenium compounds are located.

Both techniques confirmed the presence of MSC in the engineered plants, Salt said.

Other lab studies involving selenium have shown MSC to be the most effective selenium-containing compound in reducing cancer risk in animal models, making it an attractive prospect for eventual use in a nutritional supplement, Salt said.

However, he said the effectiveness of MSC in humans has not yet been tested, because to date there hasn’t been a good commercial source of it that could be used in human trials.

"We would be very interested in knowing the efficacy of MSC in humans, clearly. The problem has been there’s no material to run such an experiment, and that will be an important piece of this story down the road."

Another very different aspect of the research is the possibility of developing plants that remove contaminants from the environment. Selenium contamination, for example, is a major problem in certain parts of the world, including the agricultural region of California’s San Joaquin valley, Salt said. Selenium occurs naturally in the soil in that part of the country, but agricultural practices build that selenium to hazardous levels, he said.

"The central valley of California is a multi-billion dollar agricultural zone, but the intensive irrigation there leaches selenium out of the soil. It’s a major problem for California," he said.

A possible solution, he said, lies in the potential to engineer fast-growing plants capable of removing large quantities of selenium from the soil. Now that he and his colleagues have successfully produced a selenium-hyper-accumulating Arabidopsis, they have the tools to start to develop a plant that would be a good candidate for removing selenium from the soil.

Natural hyper-accumulators process environmental selenium in a series of steps culminating in the production of MSC, and what Salt and his colleagues have re-created in Arabidopsis is the last step in that process.

"Imagine planting something like a cornfield, but with the ability to remove contaminants from the soil," he said. "We’re not yet at that point, but we’re stepping towards that, and that’s a sensible approach. We’ve made the first step by starting with the end product."

Salt’s research is part of collaboration between Purdue and NuCycle Therapy, a small biotechnology company that develops and sells plant-based nutritional supplements. This partnership was funded through a Small Business Technology Transfer grant through the National Institutes of Health National Cancer Institute. The research is published in the current issue of BMC Plant Biology.

Also collaborating in this research were Danielle Ellis, visiting scientist with NuCycle Therapy currently working in the Purdue Center for Plant Environmental Stress Physiology; Thomas Sors, Dennis Brunk, Carrie Albrecht and Brett Lahner with the Purdue Center for Plant Environmental Stress Physiology; Cindy Orser consulting for NuCycle Therapy; Karl Wood with the Purdue chemistry department; H.H. Harris with the Stanford Synchrotron Radiaion Laboratory at the Stanford Linear Accelerator Center (currently at the University of Sydney, Australia); and Ingrid Pickering, also with the Stanford Synchrotron Radiation Laboratory (currently at the University of Saskatchewan).

Writer: Jennifer Cutraro, (765) 496-2050, jcutraro@purdue.edu

Source: David Salt, (765) 496-2114, salt@hort.purdue.edu

Ag Communications: (765) 494-2722; Beth Forbes, bforbes@aes.purdue.edu
Agriculture News Page

Jennifer Curtraro | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/2004/040203.Salt.selenium.html

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>