Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop plant that produces potential anti-carcinogen

04.02.2004


A Purdue University researcher has successfully engineered plants that may not only lead to the production of anti-carcinogenic nutritional supplements, but also may be used to remove excess selenium from agricultural fields.


This photograph shows the presence of two different selenium compounds in living plant tissue. The image on the left shows a high concentration of MSC, the selenium compound shown to have anti-cancer properties, in one of the plant’s leaves. The image on the right highlights a different selenium compound in the same leaf. The image was obtained using a technique called X-ray absorbance spectroscopy, or XAS, to visualize concentrations of selenium. Red indicates regions of high concentration. Blue and green indicate lower concentration. (Images courtesy of Ingrid Pickering, Proceedings of the National Academy of Science, 97(20); p. 107110).



By introducing a gene that makes plants tolerate selenium, David Salt, professor of plant molecular physiology, has developed plants capable of building up in their tissues unusually high levels of a selenium compound. His interest in selenium stems in part from recent research sponsored by the National Institutes of Health showing that selenium can reduce the risk of developing prostate cancer by 60 percent.

"We now know how to genetically modify plants so they will make this anti-carcinogenic selenium compound," Salt said. "This research gives us the genetic means to manipulate the amount of this material that’s produced in any plant."


Selenium, a mineral that occurs naturally in the soil in some parts of the world, is an essential micronutrient for animals, including humans, but is toxic to animals and most plants at high levels.

However, a few plant species have the ability to build up high levels of selenium in their tissues with no ill effects. These plants, called selenium hyper-accumulators, convert selenium taken up from the soil into a non-toxic form called methylselenocysteine, or MSC.

By inserting the gene responsible for this conversion into Arabidopsis thaliana, a model lab plant that does not tolerate selenium, Salt and his colleagues produced plants that not only thrive in a selenium-enriched environment but also amass high levels of the selenium-containing MSC in their tissues.

"We now know that this gene works," Salt said. "If you put it into another plant, it will make MSC, and we didn’t know that before. So now we’re in a comfortable position to say, ’okay, let’s put this gene into a plant that we can use to make into a nutritional supplement, knowing that we have a very, very high likelihood of it working and producing this compound.’"

The plants that naturally hyper-accumulate selenium would not be good candidates for use as a supplement because they often produce other compounds that may have toxic effects in humans, Salt said.

Salt and his colleagues used two different methods to verify the production of MSC in the engineered Arabidopsis. The first method, called mass spectroscopy, relies on extracting compounds from the plant tissue using a variety of solvents, then running those compounds through a type of machine that identifies their chemical nature.

The other method they used is called x-ray absorbance spectroscopy, or XAS. This technique identifies the various forms of selenium in living plant tissue and can also provide a spatial map of where in the plant these selenium compounds are located.

Both techniques confirmed the presence of MSC in the engineered plants, Salt said.

Other lab studies involving selenium have shown MSC to be the most effective selenium-containing compound in reducing cancer risk in animal models, making it an attractive prospect for eventual use in a nutritional supplement, Salt said.

However, he said the effectiveness of MSC in humans has not yet been tested, because to date there hasn’t been a good commercial source of it that could be used in human trials.

"We would be very interested in knowing the efficacy of MSC in humans, clearly. The problem has been there’s no material to run such an experiment, and that will be an important piece of this story down the road."

Another very different aspect of the research is the possibility of developing plants that remove contaminants from the environment. Selenium contamination, for example, is a major problem in certain parts of the world, including the agricultural region of California’s San Joaquin valley, Salt said. Selenium occurs naturally in the soil in that part of the country, but agricultural practices build that selenium to hazardous levels, he said.

"The central valley of California is a multi-billion dollar agricultural zone, but the intensive irrigation there leaches selenium out of the soil. It’s a major problem for California," he said.

A possible solution, he said, lies in the potential to engineer fast-growing plants capable of removing large quantities of selenium from the soil. Now that he and his colleagues have successfully produced a selenium-hyper-accumulating Arabidopsis, they have the tools to start to develop a plant that would be a good candidate for removing selenium from the soil.

Natural hyper-accumulators process environmental selenium in a series of steps culminating in the production of MSC, and what Salt and his colleagues have re-created in Arabidopsis is the last step in that process.

"Imagine planting something like a cornfield, but with the ability to remove contaminants from the soil," he said. "We’re not yet at that point, but we’re stepping towards that, and that’s a sensible approach. We’ve made the first step by starting with the end product."

Salt’s research is part of collaboration between Purdue and NuCycle Therapy, a small biotechnology company that develops and sells plant-based nutritional supplements. This partnership was funded through a Small Business Technology Transfer grant through the National Institutes of Health National Cancer Institute. The research is published in the current issue of BMC Plant Biology.

Also collaborating in this research were Danielle Ellis, visiting scientist with NuCycle Therapy currently working in the Purdue Center for Plant Environmental Stress Physiology; Thomas Sors, Dennis Brunk, Carrie Albrecht and Brett Lahner with the Purdue Center for Plant Environmental Stress Physiology; Cindy Orser consulting for NuCycle Therapy; Karl Wood with the Purdue chemistry department; H.H. Harris with the Stanford Synchrotron Radiaion Laboratory at the Stanford Linear Accelerator Center (currently at the University of Sydney, Australia); and Ingrid Pickering, also with the Stanford Synchrotron Radiation Laboratory (currently at the University of Saskatchewan).

Writer: Jennifer Cutraro, (765) 496-2050, jcutraro@purdue.edu

Source: David Salt, (765) 496-2114, salt@hort.purdue.edu

Ag Communications: (765) 494-2722; Beth Forbes, bforbes@aes.purdue.edu
Agriculture News Page

Jennifer Curtraro | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/2004/040203.Salt.selenium.html

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>