Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop plant that produces potential anti-carcinogen

04.02.2004


A Purdue University researcher has successfully engineered plants that may not only lead to the production of anti-carcinogenic nutritional supplements, but also may be used to remove excess selenium from agricultural fields.


This photograph shows the presence of two different selenium compounds in living plant tissue. The image on the left shows a high concentration of MSC, the selenium compound shown to have anti-cancer properties, in one of the plant’s leaves. The image on the right highlights a different selenium compound in the same leaf. The image was obtained using a technique called X-ray absorbance spectroscopy, or XAS, to visualize concentrations of selenium. Red indicates regions of high concentration. Blue and green indicate lower concentration. (Images courtesy of Ingrid Pickering, Proceedings of the National Academy of Science, 97(20); p. 107110).



By introducing a gene that makes plants tolerate selenium, David Salt, professor of plant molecular physiology, has developed plants capable of building up in their tissues unusually high levels of a selenium compound. His interest in selenium stems in part from recent research sponsored by the National Institutes of Health showing that selenium can reduce the risk of developing prostate cancer by 60 percent.

"We now know how to genetically modify plants so they will make this anti-carcinogenic selenium compound," Salt said. "This research gives us the genetic means to manipulate the amount of this material that’s produced in any plant."


Selenium, a mineral that occurs naturally in the soil in some parts of the world, is an essential micronutrient for animals, including humans, but is toxic to animals and most plants at high levels.

However, a few plant species have the ability to build up high levels of selenium in their tissues with no ill effects. These plants, called selenium hyper-accumulators, convert selenium taken up from the soil into a non-toxic form called methylselenocysteine, or MSC.

By inserting the gene responsible for this conversion into Arabidopsis thaliana, a model lab plant that does not tolerate selenium, Salt and his colleagues produced plants that not only thrive in a selenium-enriched environment but also amass high levels of the selenium-containing MSC in their tissues.

"We now know that this gene works," Salt said. "If you put it into another plant, it will make MSC, and we didn’t know that before. So now we’re in a comfortable position to say, ’okay, let’s put this gene into a plant that we can use to make into a nutritional supplement, knowing that we have a very, very high likelihood of it working and producing this compound.’"

The plants that naturally hyper-accumulate selenium would not be good candidates for use as a supplement because they often produce other compounds that may have toxic effects in humans, Salt said.

Salt and his colleagues used two different methods to verify the production of MSC in the engineered Arabidopsis. The first method, called mass spectroscopy, relies on extracting compounds from the plant tissue using a variety of solvents, then running those compounds through a type of machine that identifies their chemical nature.

The other method they used is called x-ray absorbance spectroscopy, or XAS. This technique identifies the various forms of selenium in living plant tissue and can also provide a spatial map of where in the plant these selenium compounds are located.

Both techniques confirmed the presence of MSC in the engineered plants, Salt said.

Other lab studies involving selenium have shown MSC to be the most effective selenium-containing compound in reducing cancer risk in animal models, making it an attractive prospect for eventual use in a nutritional supplement, Salt said.

However, he said the effectiveness of MSC in humans has not yet been tested, because to date there hasn’t been a good commercial source of it that could be used in human trials.

"We would be very interested in knowing the efficacy of MSC in humans, clearly. The problem has been there’s no material to run such an experiment, and that will be an important piece of this story down the road."

Another very different aspect of the research is the possibility of developing plants that remove contaminants from the environment. Selenium contamination, for example, is a major problem in certain parts of the world, including the agricultural region of California’s San Joaquin valley, Salt said. Selenium occurs naturally in the soil in that part of the country, but agricultural practices build that selenium to hazardous levels, he said.

"The central valley of California is a multi-billion dollar agricultural zone, but the intensive irrigation there leaches selenium out of the soil. It’s a major problem for California," he said.

A possible solution, he said, lies in the potential to engineer fast-growing plants capable of removing large quantities of selenium from the soil. Now that he and his colleagues have successfully produced a selenium-hyper-accumulating Arabidopsis, they have the tools to start to develop a plant that would be a good candidate for removing selenium from the soil.

Natural hyper-accumulators process environmental selenium in a series of steps culminating in the production of MSC, and what Salt and his colleagues have re-created in Arabidopsis is the last step in that process.

"Imagine planting something like a cornfield, but with the ability to remove contaminants from the soil," he said. "We’re not yet at that point, but we’re stepping towards that, and that’s a sensible approach. We’ve made the first step by starting with the end product."

Salt’s research is part of collaboration between Purdue and NuCycle Therapy, a small biotechnology company that develops and sells plant-based nutritional supplements. This partnership was funded through a Small Business Technology Transfer grant through the National Institutes of Health National Cancer Institute. The research is published in the current issue of BMC Plant Biology.

Also collaborating in this research were Danielle Ellis, visiting scientist with NuCycle Therapy currently working in the Purdue Center for Plant Environmental Stress Physiology; Thomas Sors, Dennis Brunk, Carrie Albrecht and Brett Lahner with the Purdue Center for Plant Environmental Stress Physiology; Cindy Orser consulting for NuCycle Therapy; Karl Wood with the Purdue chemistry department; H.H. Harris with the Stanford Synchrotron Radiaion Laboratory at the Stanford Linear Accelerator Center (currently at the University of Sydney, Australia); and Ingrid Pickering, also with the Stanford Synchrotron Radiation Laboratory (currently at the University of Saskatchewan).

Writer: Jennifer Cutraro, (765) 496-2050, jcutraro@purdue.edu

Source: David Salt, (765) 496-2114, salt@hort.purdue.edu

Ag Communications: (765) 494-2722; Beth Forbes, bforbes@aes.purdue.edu
Agriculture News Page

Jennifer Curtraro | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/2004/040203.Salt.selenium.html

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>