Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monkey talk, human speech share left-brain processing

02.02.2004


Scans have pinpointed circuits in the monkey brain that could be precursors of those in humans for speech and language. As in humans, an area specialized for processing species-specific vocalizations is on the left side of the brain, report Drs. Amy Poremba, Mortimer Mishkin, and colleagues in NIH’s National Institute of Mental Health (NIMH), Warren G. Magnuson Clinical Center (CC), components of the National Institutes of Health (NIH), and the University of Iowa. An area near the left temple responded significantly more than the same area on the right only to monkey calls, not to other animal calls, human voices or various other sounds. The researchers published their findings in the January 29, 2004 Nature.


Area 5 (left dorsal temporal pole) at the front of the brain’s temporal lobe in the left hemisphere, activated significantly more than it’s counterpart in the right hemisphere only when monkeys heard monkey calls. A right hemisphere area activated more for a variety of other sounds. This suggests that the left hemisphere site is specialized for species-specific vocalizations and may hold clues to the evolution of human speech and language. Front of brain is at right.
Source: NIMH Laboratory of Neuropsychology


PET scan of monkey brain cross-section, showing greater activity in left dorsal temporal pole than in same area of right hemisphere (arrows) while animal listens to monkey vocalizations.
Source: NIMH Laboratory of Neuropsychology



"Since it’s in the left temporal lobe and specialized for vocalizations only, it bears intriguing similarities to human language," noted Mishkin. "Assuming this is an adaptive mechanism, it suggests that vocalizations can be deciphered better if they are processed by only one temporal pole rather than by both."

Scientists have known for years that the human brain processes speech on the left side of the brain, but they only had hints that this is also the case for non-human primates. For example, when a monkey hears a call from behind, it characteristically turns its head to the right, suggesting that the primitive vocalizations are being processed in the left hemisphere, which receives greater input from the right ear than from the left. Also, a monkey’s ability to perceive such calls is impaired if it lacks the left auditory cortex, but not the right.


To find out how this works, the researchers used PET (positron emission tomography) scanning. A radioactive tracer visualized the parts of the brain that were active while different types of sounds were being processed. After eight healthy monkeys heard a series of monkey calls, an area just below the left temple, at the front of the left temporal lobe (left dorsal temporal pole), activated significantly more than its mate on the right. Yet, this area failed to similarly activate when the animals heard a variety of other sounds – bells, tones, dog barks, bird tweets, a human voice, scrambled monkey calls, etc. Instead, significant activation was seen in a different temporal lobe area on the right side of the brain, which seems to process virtually every sound.

To gain insight into how the brain achieves this hemispheric specialization, three monkeys surgically-altered to lack connecting links between the hemispheres were also scanned after listening to the sounds. With communication between the hemispheres thusly severed, the asymmetrical pattern vanished. Conspicuously, no significant difference in activation was seen in the two temporal poles when the animals heard monkey calls.

This suggests that monkey calls normally stimulate interactions between brain hemispheres that suppress the corresponding right temporal lobe area, focusing auditory processing within the left area. "Our results open up the possibility of characterizing such neuronal responses in a cortical region of the monkey that is not only a higher-order auditory processing area, but also one that could be a precursor for an acoustic language area in humans," note the researchers.

"This study provides neuroscientists with new biological clues for studying how communication evolved," said Poremba, who left NIMH a few years ago and is now at the University of Iowa.


In addition to NIMH, the research was supported, in part, by the University of Iowa.

Also participating in the study were Megan Malloy, NIMH, Dr. Richard Saunders, NIMH, Dr. Richard Carson, CC, Dr. Peter Herscovitch, CC.

The National Institute of Mental Health (NIMH) and the Warren G. Magnuson Clinical Center are parts of the National Institutes of Health (NIH), the Federal Government’s primary agency for biomedical and behavioral research. NIH is a component of the U.S. Department of Health and Human Services.

Jules Asher | EurekAlert!
Further information:
http://www.nimh.nih.gov/

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>