Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists Discover Where Snakes Lived When They Evolved into Limbless Creatures


The mystery of where Earth’s first snakes lived as they were evolving into limbless creatures from their lizard ancestors has intrigued scientists for centuries. Now, the first study ever to analyze genes from all the living families of lizards has revealed that snakes made their debut on the land, not in the ocean. The discovery resolves a long-smoldering debate among biologists about whether snakes had a terrestrial or a marine origin roughly 150 million years ago--a debate rekindled recently by controversial research in favor of the marine hypothesis.

In a paper to be published in the 7 May 2004 issue of the Royal Society journal Biology Letters, Nicolas Vidal, a postdoctoral fellow, and S. Blair Hedges, a professor of biology at Penn State, describe how they put the two theories to the test. They collected the largest genetic data set for snakes and lizards ever used to address this question. Their collection includes two genes from 64 species representing all 19 families of living lizards and 17 of the 25 families of living snakes.

Genetic material from some of the lizards was difficult to obtain because some species live only on certain small islands or in remote parts of the world. "We felt it was important to analyze genes from all the lizard groups because almost every lizard family has been suggested as being the one most closely related to snakes. If we had failed to include genes from even one of the lizard families, we could have missed getting the right answer," Hedges explains.

"For the marine hypothesis to be correct, snakes must be the closest relative of the only lizards known to have lived in the ocean when snakes evolved—the giant, extinct mosasaur lizards," Vidal says. "While we can’t analyze the genes of the extinct mosasaurs, we can use the genes of their closest living cousins, monitor lizards like the giant Komodo Dragon," he explains.

The team analyzed gene sequences from each of the species, using several statistical methods to determine how the species are related. "Although these genes have the same function in each species—and so, by definition, are the same gene—their structure in each species is slightly different because of mutations that have developed over time," Vidal explains. When the genetic comparisons were complete, Vidal and Hedges had a family tree showing the relationships of the species.

"Our results show clearly that snakes are not closely related to monitor lizards like the giant Komodo Dragon, which are the closest living relatives of the mosasaurs—the only known marine lizard living at the time that snakes evolved," Vidal says. "Because all the other lizards at that time lived on the land, our study provides strong evidence that snakes evolved on the land, not in the ocean."

The research suggests an answer to another long-debated question: why snakes lost their limbs. Their land-based lifestyle, including burrowing underground at least some of the time, may be the reason. "Having limbs is a real problem if you need to fit through small openings underground, as anybody who has tried exploring in caves knows," Hedges says. "Your body could fit through much smaller openings if you did not have the wide shoulders and pelvis that support your limbs." The researchers note that the burrowing lifestyle of many other species, including legless lizards, is correlated with the complete loss of limbs or the evolution of very small limbs.

This research was supported by the National Aeronautics and Space Administration Astrobiology Institute and the National Science Foundation.

Barbara K. Kennedy | Penn State
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>