Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover Where Snakes Lived When They Evolved into Limbless Creatures

02.02.2004


The mystery of where Earth’s first snakes lived as they were evolving into limbless creatures from their lizard ancestors has intrigued scientists for centuries. Now, the first study ever to analyze genes from all the living families of lizards has revealed that snakes made their debut on the land, not in the ocean. The discovery resolves a long-smoldering debate among biologists about whether snakes had a terrestrial or a marine origin roughly 150 million years ago--a debate rekindled recently by controversial research in favor of the marine hypothesis.





In a paper to be published in the 7 May 2004 issue of the Royal Society journal Biology Letters, Nicolas Vidal, a postdoctoral fellow, and S. Blair Hedges, a professor of biology at Penn State, describe how they put the two theories to the test. They collected the largest genetic data set for snakes and lizards ever used to address this question. Their collection includes two genes from 64 species representing all 19 families of living lizards and 17 of the 25 families of living snakes.

Genetic material from some of the lizards was difficult to obtain because some species live only on certain small islands or in remote parts of the world. "We felt it was important to analyze genes from all the lizard groups because almost every lizard family has been suggested as being the one most closely related to snakes. If we had failed to include genes from even one of the lizard families, we could have missed getting the right answer," Hedges explains.


"For the marine hypothesis to be correct, snakes must be the closest relative of the only lizards known to have lived in the ocean when snakes evolved—the giant, extinct mosasaur lizards," Vidal says. "While we can’t analyze the genes of the extinct mosasaurs, we can use the genes of their closest living cousins, monitor lizards like the giant Komodo Dragon," he explains.

The team analyzed gene sequences from each of the species, using several statistical methods to determine how the species are related. "Although these genes have the same function in each species—and so, by definition, are the same gene—their structure in each species is slightly different because of mutations that have developed over time," Vidal explains. When the genetic comparisons were complete, Vidal and Hedges had a family tree showing the relationships of the species.

"Our results show clearly that snakes are not closely related to monitor lizards like the giant Komodo Dragon, which are the closest living relatives of the mosasaurs—the only known marine lizard living at the time that snakes evolved," Vidal says. "Because all the other lizards at that time lived on the land, our study provides strong evidence that snakes evolved on the land, not in the ocean."

The research suggests an answer to another long-debated question: why snakes lost their limbs. Their land-based lifestyle, including burrowing underground at least some of the time, may be the reason. "Having limbs is a real problem if you need to fit through small openings underground, as anybody who has tried exploring in caves knows," Hedges says. "Your body could fit through much smaller openings if you did not have the wide shoulders and pelvis that support your limbs." The researchers note that the burrowing lifestyle of many other species, including legless lizards, is correlated with the complete loss of limbs or the evolution of very small limbs.

This research was supported by the National Aeronautics and Space Administration Astrobiology Institute and the National Science Foundation.

Barbara K. Kennedy | Penn State
Further information:
http://www.science.psu.edu/alert/Hedges1-2004.htm

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>