Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular level discovery could play role in development of new antibiotics

30.01.2004


Chemists at the University of Illinois at Urbana-Champaign have uncovered the molecular activity of an enzyme responsible for naturally turning a small protein into a potent antibiotic known as a lantibiotic.

The finding is described in the Jan. 30 issue of the journal Science. The research details how the enzyme performs two biosynthetic reactions that lead to the formation of fused cyclic structures required for antimicrobial activity. The discovery unlocks a door that could lead to a new line of antibiotic compounds based on nature’s machinery, said Wilfred A. van der Donk, a professor of chemistry at Illinois.

The work was done using lacticin 481, a lantibiotic produced by one of several strains of Lactococcus lactis, a bacterium used in cheese production. Other lantibiotics are used to preserve other dairy products and canned vegetables. The lantibiotic nisin has been used for more than 50 years as an alternative to chemicals in food preservation in more than 40 countries without the development of significant antibiotic resistance.



"The use of antibiotics is an important area of medicine, because pathogenic bacteria are always in the environment," van der Donk said. "It’s important to renew our arsenal of compounds that combat pathogens. With the development of resistance -- not just the kind that occurs through evolution but also the kind potentially created in biological weapons by terrorists -- we will always need new antibiotics."

The breakthrough in van der Donk’s lab came in March 2003, when his doctoral student Lili Xie, now at the Harvard Medical School, noticed catalytic activity in the material she was investigating. Van der Donk had been pursuing such activity for six years. Many other labs have tried since the late 1980s, when the genes involved in nisin’s biosynthetic pathway were sequenced, but efforts to make analogs in vitro had failed.

Lantibiotics are ribosomally synthesized and modified into a bacteria-fighting form after translation. One type of lantibiotics is modified by two proteins, while another type, scientists have proposed, is able to complete the transformation, forming cyclic regions with sturdy protease-resistant bonds at precise locations, with just one enzyme.

The finding in van der Donk’s lab and subsequent analyses in the research laboratory of Neil L. Kelleher, a professor of chemistry and co-principal investigator, confirms that one enzyme, LctM, alone can complete the modification.

The researchers were led to LctM, which is involved in the biosynthesis of lacticin 481, through trial and error as they tried to manipulate a peptide substrate. LctM, acting in the presence of adenosine triphosphate and ionized magnesium, selected specific serines and threonines for modification, allowing for a correct final structure of the material.

It was reported in 1999 that lantibiotics such as nisin are effective and elude resistance because they work like a double-edged sword. They form holes in the cell membranes and also bind to intermediate targets of a disease-causing bacterium. Hitting on two targets simultaneously reduces the risk of resistance occurring, van der Donk said.

"We are interested in antibiotics that are used commercially and that are not chemically made but derived from organisms, such as bacteria, that make them for us," he said. "If nature makes these materials, wouldn’t it be great to understand and use the machinery that nature uses to make compounds ourselves? By having this purified system, we can modify the substrate of the enzyme that makes a lantibiotic and make antibiotic analogs that nature cannot make. This really opens an avenue to engineer antibiotics and look for active compounds that we can access using the machinery we’ve found."


The National Institutes of Health, Beckman Foundation and Burroughs Wellcome Fund supported the research through grants to van der Donk and Kelleher. Other contributors were research technician Olga Averin and doctoral students Leah M. Miller and Champak Chatterjee.

Jim Barlow | UIUC
Further information:
http://www.news.uiuc.edu/news/04/0129lantibiotics.html

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>