Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sex in the brain: How do male monkeys evaluate mates?

30.01.2004


A pint-sized, tree-dwelling Brazilian monkey has proven to be strikingly similar to humans when it comes to sexual responses, a national research team has discovered.



Through functional magnetic resonance imaging, or fMRI, scientists from the University of Wisconsin-Madison and collaborating institutions for the first time peered into the brains of fully conscious nonhuman primates to learn what’s really on their minds when it comes to sex. The research appears in the February 2004 issue of the Journal of Magnetic Resonance Imaging.

Common marmosets, like humans, live in family groups and have to make careful choices when confronted with the scent of an attractive female, a team of marmoset experts led by Charles T. Snowdon, UW-Madison professor of psychology, discovered.


"We were surprised to observe high levels of neural activity in areas of the brain important for decision-making, as well as in purely sexual arousal areas, in response to olfactory cues," Snowdon says. "Lighting up far more brightly than we expected were areas associated with decision-making and memory, emotional processing and reward, and cognitive control."

The marmoset fMRI findings add strong weight to the mounting evidence that, when faced with a novel, sexually attractive and receptive female, males even in monogamous species aren’t necessarily just acting on some primal urge to procreate, without a second thought. Rather, they exhibit highly organized, complex neural processes.

"This is the first time anyone has imaged an awake nonhuman primate in response to emotionally arousing stimuli; it is also the first link between external sexual odors and the internal sexual arousal system," Snowdon says. "This opens up a whole new field of research possibilities."

The marmoset data corresponded surprisingly close to human fMRI studies, the scientists found. "The benefit of the nonhuman primate model is that we can control and know the developmental and social histories of our study subjects, to carry out studies not possible in humans," Snowdon says.

Joining Snowdon in working with the marmosets were Toni Ziegler, Nancy Schultz-Darken and Pam Tannenbaum of the Wisconsin National Primate Research Center at UW-Madison. The Primate Center provided four male marmosets for the study. The researchers trained and transported them from the University of Wisconsin to the University of Minnesota, where the imaging took place.

The researchers imaged the male marmosets’ neural activity while they were presented with anogenital gland secretion samples from periovulatory females, those at or close to ovulation. Other samples, taken from ovariectomized females, gave the researchers a way to compare how the males responded to female marmoset scents containing no sexual cues, according to Ziegler. When the same males smelled the "sexier scents" from the ovulating females, the scientists could discern which neural areas showed further activation, thus identifying areas where information processing occurs.

"We were surprised to learn how great a role the neural areas related to cognitive processing play in determining how males respond to sexually receptive females," Ziegler says.

To preempt stress to the animals, Ziegler and Schultz-Darken brought the marmosets’ cage-mates along on the road trip. "The marmosets were trained in advance, over brief periods, to get used to a mock imaging process," Ziegler says. "By the time they underwent the real thing, they did not exhibit any signs of stress."

"We acted as advocates for the marmosets," adds Schultz-Darken, who is also a colony manager at the Primate Center. "It was very important to properly habituate them to the imaging equipment. We had a wonderful experience with the facility and the people at the University of Minnesota."


Lead author Craig Ferris is a professor of psychiatry at the University of Massachusetts Medical School (UMMS) and director of the Center for Comparative Neuroimaging, a collaboration between UMMS and Worcester Polytechnic Institute. The study was funded by the National Institute of Mental Health.

The collaboration also included Reinhold Ludwig and John Sullivan of the Department of Electrical Engineering at the Worcester Polytechnic Institute. Other scientists included Jean King, UMMS associate professor of psychiatry; David Olson, Harvard Medical School; and Timothy Duong and Thomas Vaughan at the University of Minnesota, departments of Radiology, Electrical Engineering and Biomedical Engineering.

- Jordana Lenon, 608-263-7024; jlenon@primate.wisc.edu

Charles Snowdon | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Chances to treat childhood dementia

24.07.2017 | Health and Medicine

Improved Performance thanks to Reduced Weight

24.07.2017 | Automotive Engineering

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>