Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Findings could aid efforts to harness nature for making drugs

29.01.2004


Chemical engineers at Purdue University have shown how to make yeast cells double the activity and boost productivity of a type of enzyme plants need to create important chemicals such as anticancer compounds.

The work is related to efforts aimed at developing techniques to use plants and microorganisms as natural factories for producing pharmaceuticals. Such techniques would be safer and more environmentally friendly than conventional methods for making drugs, which often require hazardous chemicals and steel "reactors" operated at high pressures and temperatures. The enzymes from plants and other organisms typically function in water near room temperature under ordinary pressure.

The Purdue researchers demonstrated that altering the nutrients and carefully controlling fermentation time caused yeast cultures to produce an enzyme called ferulate 5-hydroxylase that has twice its normal rate of activity, which increases the enzyme’s productivity.



"Activity relates to the amount of product that can be synthesized in a given time," said John Morgan, an assistant professor of chemical engineering at Purdue. "So we could make more than twice the amount of product per hour."

Findings are detailed in a paper appearing in the Jan. 20 issue of the journal Biotechnology and Bioengineering, published by John Wiley & Sons Inc. The paper was written by Morgan and Purdue doctoral student Hanxiao Jiang.

The enzyme is a member of a family of enzymes called cytochrome P450, which plants need to produce numerous chemical compounds.

Plants ordinarily produce small quantities of "flavonoids," which are beneficial chemicals known as antioxidants. So researchers are developing ways to boost production of the chemicals by transferring vital enzymes from plants to microorganisms. Because P450 enzymes are "biocatalysts" that enable an organism to produce the beneficial drugs, researchers are trying to develop techniques that cause plants to make greater quantities of the enzymes and enzymes that are more productive.

The method pursued by the Purdue researchers was to focus on a gene responsible for producing ferulate 5-hydroxylase.

Altering the composition of nutrients fed to the yeast cultures and controlling the fermentation time caused the gene to be "expressed," producing 45 percent more of the enzyme while doubling the enzyme’s activity.

Increasing the quantity and activity of various cytochrome P450 enzymes might enable scientists to use plants and microorganisms like E. coli and baker’s yeast to one day commercially produce pharmaceuticals. More progress is needed, however, before it will be practical to use plants and plant enzymes in microorganisms as natural pharmaceutical factories, Morgan said.

"I wouldn’t consider this a major breakthrough, but it does represent significant progress in improving the expression of the enzyme," he said. "I think there is certainly room for greater expression of these P450 enzymes."

The same technique could be used to increase the production of other P450 enzymes, Morgan said.

"The plant kingdom contains a large and relatively untapped diversity of P450s that are needed to create thousands of valuable natural products," he said.

In ongoing work, the Purdue researchers also are trying to develop methods for coaxing the enzymes to make drugs not normally produced by plants.

"We are feeding them what’s known as substrate analogs, or compounds that are structurally similar to the compound that this enzyme will normally recognize and react with but are somewhat structurally different," Morgan said. "Therefore, if the enzyme recognizes this compound, it will produce a novel product, or a product that’s never been synthesized before.

"From a scientific standpoint, we want to better understand precisely how organisms make certain compounds, and from an engineering standpoint, we want to devise a strategy for manipulating the organism so that it makes the chemicals we want it to make."

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu
Source: John Morgan, (765) 494-4088, jamorgan@ecn.purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Note to Journalists: An electronic copy of the research paper is available from Emil Venere, (765) 494-4709, venere@purdue.edu

Emil Venere | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/2004/040128.Morgan.enzyme.html

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>