Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sandia, UNM researchers mimic photosynthetic proteins to manipulate platinum at the nanoscale

28.01.2004


Method has potential of changing the metal’s properties; many new applications possible



Researchers from the Department of Energy’s Sandia National Laboratories and the University of New Mexico have developed a new way of mimicking photosynthetic proteins to manipulate platinum at the nanoscale. The method has the potential of changing the metal’s properties and benefiting emerging technologies.

"While we are in the early stages of research, we see the possibility of manipulating the nanoscale structure of platinum so that we can have control over the size, porosity, composition, surface species, solubility, stability, and other functional properties of these metal nanostructures," says John Shelnutt, the Sandia scientist leading the research effort. "Such control means that the redesigned platinum could be used in many new applications, including catalysis, sensors, and optoelectronic and magnetic devices."


He adds that while research groups have reported a few platinum nanostructures - including nanoparticles, nanowires, nanosheets, and others - the addition of new types of nanostructures is "highly desirable and potentially technologically important."

Working with Shelnutt in the research are Frank van Swol from Sandia, UNM graduate student Yujiang Song, and Eulalia Pereira from the University of Porto in Portugal.

The new method of manipulating platinum was detailed in a paper in the Journal of American Chemical Society published in late December.

The idea for the technique is similar to photosynthesis, in which plants use the energy from sunlight to produce sugar. But instead of manufacturing sugar, the new method changes a platinum ion to the neutral metal atoms. The photosynthetic protein mimicks this repeatedly, allowing metal to be deposited as desired at the nanoscale.

The method involves putting porphyrins - the active part of photosynthetic proteins - along with the platinum salt in an aqueous solution of ascorbic acid at room temperature. The porphyrins are placed in specific locations in the solution where it is intended that metal should be deposited. For example, the porphyrins may be confined to micelles or liposomes. Micelles are spherical assemblies of detergent molecules in which the heads are exposed to the water and the tails stick together in the interior. Liposomes are similar structures but they are larger and have water on the inside and outside separated by a closed membrane - sort of like a cell. The membrane is composed of two layers of detergent molecules, with the heads on the inner and outer surface facing the water and the tails forming the interior of the membrane.

When light is shined on the porphyrins located in these detergent structures, the porphyrins excite, becoming catalysts for platinum reduction and deposition. As this occurs, the metal grows onto the surfaces of the surfactant structures as a thin sheet or in other ways. In the case of micelles, the platinum grows into balls that look like the common toy "Koosh(tm)" ball. The ball size can be controlled by the amount of porphyrins and platinum in the solution, the amount of light illuminating the solution, and the amount of time the light is on.

For the metals platinum and palladium that form these nanostructures, it is enough for the porphyrin molecule to grow only a small metal "seed" particle composed of about 500 atoms. When it reaches this size, the seed starts to catalyze its own rapid growth (by oxidation of ascorbic acid), budding off arms in all directions and creating the Koosh-ball-like nanostructures. The porphyrin provides a convenient method of making these seeds at the location and time desired, leading to a uniform and selectable nanostructure size.

The platinum nanostructures take on a different form when they are prepared under different conditions. When the porphyrin is in a micelle, the platinum nanostructures produced look like Koosh balls. When the porphyrin is in the bilayer membrane of a liposome, the platinum grows in 2-nanometer thick sheet or platinum lace on the outer surface of the membrane, giving circular sheets - sort of like two-dimensional Koosh balls.

Under solution conditions for which the liposomes aggregate, growth can occur along the interfaces of the liposomes to give platinum foamlike materials and foam nanoballs. The type of nanostructure is mainly determined by the type of surfactant assembly upon which the platinum grows and the extent of growth from the individual seed nanoparticles.

Since the porphyrin remains attached to the platinum nanostructure and active in the presence of light, it can also perform other functions besides growing itself. For example when illuminated with light, the platinum nanostructure evolves hydrogen from water. This reaction is similar to one of interest to car manufacturers looking to new ways to build automobiles powered by hydrogen fuel cells.

Shelnutt says that in addition to structuring the platinum, the process also happens very fast. A few minutes in light will create many seeds, which then grow into the mature nanostructures in tens of minutes. And the process is easy to do.

"It’s so simple it’s amazing," Shelnutt says.



Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Sandia media contact: Chris Burroughs, coburro@sandia.gov, (505) 844-0948

Sandia Technical Contact: John Shelnutt, jasheln@sandia.gov, (505) 272-7160

Sandia National Laboratories
A Department of Energy National Laboratory
Managed and Operated by Sandia Corporation
ALBUQUERQUE, NM LIVERMORE, CA
MEDIA RELATIONS DEPARTMENT MS 0165
ALBUQUERQUE, NM 87185-0165

Chris Burroughs | Sandia
Further information:
http://www.sandia.gov/
http://www-irn.sandia.gov/son-home/news-center/news-releases/2004/mat-chem/nanoscale-platinum.html

More articles from Life Sciences:

nachricht Molecular evolution: How the building blocks of life may form in space
26.04.2018 | American Institute of Physics

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>