Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


U. Chicago study overturns conclusion of historic human genome data


Geneticists found sex-related genes escape from X chromosome

Researchers at the University of Chicago have discovered there is extensive gene "traffic" on the mammalian X chromosome and overturn a conventional theory about how the genes evolved on the sex chromosome.

The study, published in the Jan. 23, 2004, issue of Science, shows that an excess of genes on the X chromosome "jump" to a non-sex chromosome, or autosome, during germline cell division. This finding contradicts the historic human genome project paper published in Science Feb. 16, 2001, that claimed the X chromosome had an average rate of traffic similar to all autosomes. The discovery also torpedoes the conventional theory that the X chromosome is the ’hot bed’ for sex-related genes.

"That’s just not true," said Manyuan Long, the associate professor of ecology and evolution who led the study.

Since the X chromosome becomes inactive – meaning it shuts down – during male meiosis, the U. Chicago researchers suggest the male-expressed genes must flee the X before this phenomenon takes place.

Long and his colleagues propose that sexual antagonism may also cause this high traffic volume on the X. Since females have two X chromosomes and males have only one, the X is more likely to end up in a female. And if there is a beneficial gene mutation on the X, there is a higher chance that it would help the female, despite its affect on the man. The researchers suggest that the male-expressed genes leave the X for an autosome, where each gene would have the same share of the chromosome and therefore a better environment to carry out its function more effectively.

"An X-linked gene spends two-thirds of its time in females compared with one-half for an autosomal gene, thus the X chromosome becomes ’demasculinized,’" the researchers wrote in the paper.

The research team contends that either theory justifies male-expressed genes leaving the X chromosome, whether the X kicks them out or they merely jump ship before the X shuts down. "The two explanations are not mutually exclusive," Long said. "Either way, if [the male-expressed genes] remain on the X chromosome, they would not be able to do their job well. They have to leave in order to carry out their function."

Besides studying the human genome, the researchers also charted the gene traffic of the X chromosome, as well as its 19 autosomes, for the mouse and found the same basic pattern. Long’s laboratory first discovered this pattern of X-derived autosomal genes that express in the testis using the fruit fly, work published in Genome Research in 2002. The latest study by his team confirms the pattern in two mammalian species.

"The most important result of the paper is the phenomenon itself," said J.J. Emerson, fourth year graduate student in Long’s lab and one of the lead authors of the paper. "We can see very clearly that the X is an unusual case. Through the evolution of gene duplication, the X chromosome seems to have an excess of traffic."

Through various mechanisms, genes duplicate. The original copy can remain where it is and another version of it can be placed elsewhere in the genome. This type of gene duplication is one of the ways organisms diversify. "You can duplicate a gene used for one function, tweak it just a little bit, and you can have a totally new function," Emerson said. "When you need new functions, gene duplication provides those new functions, and it’s a beautiful mechanism for giving biological novelty."

The scientists looked at retroposed genes -- those genes that are copied by being reinserted randomly into the genome -- simply because scientists can map the direction of those genes (whether it left or joined the chromosome). The team looked at the "expected levels of traffic" by plotting pseudo genes -- those genes that lose their function after being duplicated and which natural selection ignores.

The researchers compared the rate of gene traffic on the X to all of the autosomes and found the X chromosome exports four times as many genes than the average autosome and imports 3.5 times as many. They did not look at the traffic rate of the Y chromosome. "It’s such a small chromosome that any excess or decrease is miniscule-" Emerson said. They found that 77 percent of the genes leaving the X chromosome have testis expression, compared to 44 percent of genes that jump from autosome to autosome.

The researchers noted that this Darwinian process has evolved slowly since both mouse and humans share the same excess traffic characteristics on the X chromosome. It was therefore present prior to the mouse-human split.

The study also shows that although approximately 71 percent of those genes leaving the X chromosome are to be expressed in a male germline cell, only about 14 percent of the genes being imported to the X are female expressed.

"So the old idea that the X chromosome is a major contributor of sexual genes is also not true," Long said. "The X chromosome is not the ’hot bed’ of sex-related genes that was once thought."

The researchers plan to take a closer look at the excess traffic, tracking the exported genes as well as their expression. They also are trying to locate where the majority of female-expressed genes originate.

Long recently received two research grants: a CAREER Award from the National Science Foundation providing nearly a million dollars over five years and grant of more than one million dollars from the National Institutes of Health. Both the NSF and the NIH, as well as the Packard Foundation, supported this research.

Additional authors include former U. Chicago postdocs Esther Betran, PhD, now of the University of Texas at Arlington, and Henrik Kaessmann, PhD, (the other lead author of the paper) now of the University of Lausanne in Switzerland.

Catherine Gianaro | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>