Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U. Chicago study overturns conclusion of historic human genome data

23.01.2004


Geneticists found sex-related genes escape from X chromosome



Researchers at the University of Chicago have discovered there is extensive gene "traffic" on the mammalian X chromosome and overturn a conventional theory about how the genes evolved on the sex chromosome.

The study, published in the Jan. 23, 2004, issue of Science, shows that an excess of genes on the X chromosome "jump" to a non-sex chromosome, or autosome, during germline cell division. This finding contradicts the historic human genome project paper published in Science Feb. 16, 2001, that claimed the X chromosome had an average rate of traffic similar to all autosomes. The discovery also torpedoes the conventional theory that the X chromosome is the ’hot bed’ for sex-related genes.


"That’s just not true," said Manyuan Long, the associate professor of ecology and evolution who led the study.

Since the X chromosome becomes inactive – meaning it shuts down – during male meiosis, the U. Chicago researchers suggest the male-expressed genes must flee the X before this phenomenon takes place.

Long and his colleagues propose that sexual antagonism may also cause this high traffic volume on the X. Since females have two X chromosomes and males have only one, the X is more likely to end up in a female. And if there is a beneficial gene mutation on the X, there is a higher chance that it would help the female, despite its affect on the man. The researchers suggest that the male-expressed genes leave the X for an autosome, where each gene would have the same share of the chromosome and therefore a better environment to carry out its function more effectively.

"An X-linked gene spends two-thirds of its time in females compared with one-half for an autosomal gene, thus the X chromosome becomes ’demasculinized,’" the researchers wrote in the paper.

The research team contends that either theory justifies male-expressed genes leaving the X chromosome, whether the X kicks them out or they merely jump ship before the X shuts down. "The two explanations are not mutually exclusive," Long said. "Either way, if [the male-expressed genes] remain on the X chromosome, they would not be able to do their job well. They have to leave in order to carry out their function."

Besides studying the human genome, the researchers also charted the gene traffic of the X chromosome, as well as its 19 autosomes, for the mouse and found the same basic pattern. Long’s laboratory first discovered this pattern of X-derived autosomal genes that express in the testis using the fruit fly, work published in Genome Research in 2002. The latest study by his team confirms the pattern in two mammalian species.

"The most important result of the paper is the phenomenon itself," said J.J. Emerson, fourth year graduate student in Long’s lab and one of the lead authors of the paper. "We can see very clearly that the X is an unusual case. Through the evolution of gene duplication, the X chromosome seems to have an excess of traffic."

Through various mechanisms, genes duplicate. The original copy can remain where it is and another version of it can be placed elsewhere in the genome. This type of gene duplication is one of the ways organisms diversify. "You can duplicate a gene used for one function, tweak it just a little bit, and you can have a totally new function," Emerson said. "When you need new functions, gene duplication provides those new functions, and it’s a beautiful mechanism for giving biological novelty."

The scientists looked at retroposed genes -- those genes that are copied by being reinserted randomly into the genome -- simply because scientists can map the direction of those genes (whether it left or joined the chromosome). The team looked at the "expected levels of traffic" by plotting pseudo genes -- those genes that lose their function after being duplicated and which natural selection ignores.

The researchers compared the rate of gene traffic on the X to all of the autosomes and found the X chromosome exports four times as many genes than the average autosome and imports 3.5 times as many. They did not look at the traffic rate of the Y chromosome. "It’s such a small chromosome that any excess or decrease is miniscule-" Emerson said. They found that 77 percent of the genes leaving the X chromosome have testis expression, compared to 44 percent of genes that jump from autosome to autosome.

The researchers noted that this Darwinian process has evolved slowly since both mouse and humans share the same excess traffic characteristics on the X chromosome. It was therefore present prior to the mouse-human split.

The study also shows that although approximately 71 percent of those genes leaving the X chromosome are to be expressed in a male germline cell, only about 14 percent of the genes being imported to the X are female expressed.

"So the old idea that the X chromosome is a major contributor of sexual genes is also not true," Long said. "The X chromosome is not the ’hot bed’ of sex-related genes that was once thought."

The researchers plan to take a closer look at the excess traffic, tracking the exported genes as well as their expression. They also are trying to locate where the majority of female-expressed genes originate.

Long recently received two research grants: a CAREER Award from the National Science Foundation providing nearly a million dollars over five years and grant of more than one million dollars from the National Institutes of Health. Both the NSF and the NIH, as well as the Packard Foundation, supported this research.

Additional authors include former U. Chicago postdocs Esther Betran, PhD, now of the University of Texas at Arlington, and Henrik Kaessmann, PhD, (the other lead author of the paper) now of the University of Lausanne in Switzerland.

Catherine Gianaro | EurekAlert!
Further information:
http://www.medcenter.uchicago.edu/

More articles from Life Sciences:

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

nachricht When fish swim in the holodeck
22.08.2017 | University of Vienna

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Molecular volume control

22.08.2017 | Life Sciences

When fish swim in the holodeck

22.08.2017 | Life Sciences

Biochemical 'fingerprints' reveal diabetes progression

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>