Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pew report finds GM insects may offer benefits, but clear regulatory oversight is lacking

23.01.2004


Lack of regulatory plan could slow scientific advancement and deter public confidence



Researchers are using biotechnology to develop genetically modified (GM) insects for a wide variety of purposes, including fighting insect-borne diseases like malaria and controlling destructive insect agricultural pests, but the federal government lacks a clear regulatory framework for reviewing environmental safety and other issues associated with GM insects, according to Bugs in the System? Issues in the Science and Regulation of Genetically Modified Insects, a new report released today by the Pew Initiative on Food and Biotechnology.

The report provides an overview of current research efforts to apply genetic engineering technology to insects, and looks at the benefits, risks and scientific uncertainties associated with transgenic insects. After examining the strengths and weaknesses of the legal authorities EPA, FDA and USDA could use to conduct a regulatory review, the report finds the major concern regarding regulation is the absence of a clear articulation of how transgenic insects will be regulated. While a number of laws could potentially apply to GM insects, federal regulators have not indicated if they would regulate GM insects, how a regulatory review would be conducted, which agencies would be involved, or how those agencies would coordinate.


"Although it may be several years before scientists are ready to conduct a wide scale release of transgenic insects, the research threatens to outpace regulatory preparedness," said Michael Rodemeyer, executive director of the Pew Initiative on Food and Biotechnology. "The benefits of GM insects could be significant, but the federal government needs to move quickly to clarify how it will provide an adequate review of these insects and the many questions they raise regarding the environment, public health, agriculture and food safety."

Scientists are currently working to genetically modify insects to address important economic and human health concerns. If successful, GM insects could dramatically improve public health and enhance agricultural production. Examples include:


Mosquitoes incapable of transmitting malaria, which is contracted by 300 - 500 million people annually and kills between one and three million people worldwide each year.

Honeybees genetically engineered so they are resistant to diseases and parasites, which have devastated the honeybee population in the last decade.

Silkworms made to produce pharmaceutical and industrial proteins, like those used to create a particularly strong spider silk that could be used to make bulletproof vests, parachutes, and artificial ligaments.

Kissing bugs unable to transmit Chagas’ disease, which currently infects 16 - 18 million people annually and kills nearly 50,000 people worldwide each year.
However, there is uncertainty about the lasting effects these insects could have on ecosystems, public health and food safety once released. For instance, the success of some GM insects is contingent on the ability of fertile GM insects to replace wild insect populations and become established in the environment. Release of fertile GM insects increases the potential that transgenic traits could spread throughout the insect population, potentially making pre-existing pest problems worse or creating altogether new challenges. It is also possible that GM insects released to control the spread of disease could actually have the unintended consequence of enabling an insect to more effectively spread disease or even carry a human disease it was never before able to transmit. Lastly, there is the possibility that modifying the genetic composition of honeybees could alter the composition of the honey they produce, potentially creating a food safety concern. All of these uncertainties will need to be addressed by regulators prior to the introduction and release of GM insects.

The federal government currently has no comprehensive policy on how transgenic insects will be reviewed. Under existing laws, at least three different agencies – the Food and Drug Administration (FDA), the Environmental Protection Agency (EPA), and the Department of Agriculture (USDA) – could have some authority over certain kinds of GM insects. But only USDA has issued regulations that cover any type of GM insect (USDA requires regulatory approval of any field trials of GM insects that are potential plant pests.) No single agency appears to have authority to consider all of the issues raised by the many different types of GM insects being developed, and agencies have not indicated how, or if, they intend to coordinate their respective authorities to provide a comprehensive framework for regulation. Without clarification about how transgenic insects will be regulated, it is difficult to determine if the unique issues raised by transgenic insects will be addressed in a manner that inspires public confidence and provides the scientific community with adequate guidance.

The absence of regulatory clarity regarding domestic GM insect activity has broader implications. The mobility and range of insects pose international regulatory challenges never faced with GM crops, and much of the public health research underway seeks to address insect-borne diseases most prevalent outside the U.S, meaning international regulatory bodies will likely be engaged before any insects are released. Because U.S. regulatory policies will be an important building block in the development of international policies regarding GM insects, domestic stagnation impedes development on an international level.

"Clarity from U.S. regulators would benefit both the scientific community and the public at large," concluded Rodemeyer. "Without a clear and transparent roadmap for regulation, it is difficult for scientists to know how to proceed with research efforts and the public has little reason to trust that the risks and benefits are being appropriately weighed and measured."


Contact:

Dan DiFonzo
202-347-9044 x 231
dandifonzo@pewagbiotech.org

Kim Brooks
202-347-9044 x 230
kbrooks@pewagbiotech.org

Dan DiFonzo | EurekAlert!
Further information:
http://pewagbiotech.org/research/bugs.
http://www.pewagbiotech.org/

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>