Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nerves, heal thyselves

21.01.2004


Weizmann Institute scientists reveal key part of nerve regeneration mechanism



A new study conducted by Weizmann Institute scientists has now uncovered a key process leading to the regeneration of peripheral nerves. Nerves in the peripheral nervous system (any part of the body aside from the brain and spinal cord) are capable of regenerating, though often they do so poorly or slowly. Scientists have been trying to understand how they regenerate in order to better treat damage to the peripheral nervous system.
In addition, knowing how these neurons regenerate could provide insights into fixing neurons in the central nervous system where damage is irreversible.

Nerve cells are uniquely shaped, consisting of a cell body from which a long "arm," called an axon, extends. Axons can reach up to one meter in length and are the main conduit for nerve communication throughout our bodies, by conveying electric signals to muscles or other cells. Due to their great length, axons, like electrical or telecommunications lines, are vulnerable to damage. When a power line goes down in a storm, monitoring systems raise the alarm and repair crews are dispatched to the site. How does an axon ’raise the alarm’ after damage in our own bodies?



In a study published in Neuron, Dr. Michael Fainzilber and Ph.D. students Shlomit Hanz and Eran Pearlson of the Biological Chemistry Department have now shown that a special protein is produced at the site of damage in the axon. Called importin beta, it normally resides far away from the axon, near the nucleus of nerve cells. There, it facilitates the entry of molecules into the nucleus along with its "sister" molecule, importin alpha.

The scientists found that importin beta is produced in the axons upon injury. It then binds to importing alpha, which is normally present in axons, and to proteins that contain the "healing message" (which still have to be identified). The whole group fastens itself to an "engine" called dynein that chugs along "tracks" leading from the axon to the nucleus. The protein complex gains easy entrance to the nucleus due to the presence of importin alpha and beta. The researchers found that blocking this newly uncovered process inhibits nerve regeneration (photos available).

The identification of the proteins containing the "healing message" and of the genes that enable the healing response is the next step in unlocking the mystery of peripheral nerve regeneration.

Since the central and peripheral systems are connected to each other, the ability to transfer substances within the peripheral nervous system could one day offer a springboard from which to introduce therapeutic agents into the brain and spinal cord.

Dr. Michael Fainzilber’s research is supported by the Y. Leon Benoziyo Institute for Molecular Medicine, the Irwin Green Alzheimer’s Research Fund, the Koshland Research Fund, and the Buddy Taub Foundation. Dr. Fainzilber is the incumbent of the Daniel E. Koshland Sr. Career Development Chair.

Alex Smith | EurekAlert!
Further information:
http://www.weizmann.ac.il/

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>