Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nerves, heal thyselves

21.01.2004


Weizmann Institute scientists reveal key part of nerve regeneration mechanism



A new study conducted by Weizmann Institute scientists has now uncovered a key process leading to the regeneration of peripheral nerves. Nerves in the peripheral nervous system (any part of the body aside from the brain and spinal cord) are capable of regenerating, though often they do so poorly or slowly. Scientists have been trying to understand how they regenerate in order to better treat damage to the peripheral nervous system.
In addition, knowing how these neurons regenerate could provide insights into fixing neurons in the central nervous system where damage is irreversible.

Nerve cells are uniquely shaped, consisting of a cell body from which a long "arm," called an axon, extends. Axons can reach up to one meter in length and are the main conduit for nerve communication throughout our bodies, by conveying electric signals to muscles or other cells. Due to their great length, axons, like electrical or telecommunications lines, are vulnerable to damage. When a power line goes down in a storm, monitoring systems raise the alarm and repair crews are dispatched to the site. How does an axon ’raise the alarm’ after damage in our own bodies?



In a study published in Neuron, Dr. Michael Fainzilber and Ph.D. students Shlomit Hanz and Eran Pearlson of the Biological Chemistry Department have now shown that a special protein is produced at the site of damage in the axon. Called importin beta, it normally resides far away from the axon, near the nucleus of nerve cells. There, it facilitates the entry of molecules into the nucleus along with its "sister" molecule, importin alpha.

The scientists found that importin beta is produced in the axons upon injury. It then binds to importing alpha, which is normally present in axons, and to proteins that contain the "healing message" (which still have to be identified). The whole group fastens itself to an "engine" called dynein that chugs along "tracks" leading from the axon to the nucleus. The protein complex gains easy entrance to the nucleus due to the presence of importin alpha and beta. The researchers found that blocking this newly uncovered process inhibits nerve regeneration (photos available).

The identification of the proteins containing the "healing message" and of the genes that enable the healing response is the next step in unlocking the mystery of peripheral nerve regeneration.

Since the central and peripheral systems are connected to each other, the ability to transfer substances within the peripheral nervous system could one day offer a springboard from which to introduce therapeutic agents into the brain and spinal cord.

Dr. Michael Fainzilber’s research is supported by the Y. Leon Benoziyo Institute for Molecular Medicine, the Irwin Green Alzheimer’s Research Fund, the Koshland Research Fund, and the Buddy Taub Foundation. Dr. Fainzilber is the incumbent of the Daniel E. Koshland Sr. Career Development Chair.

Alex Smith | EurekAlert!
Further information:
http://www.weizmann.ac.il/

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>