Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Resilience through improvisation

21.01.2004


Our cells are resourceful when it comes to copying DNA, even when the DNA is damaged



Billions of cells divide every day in our bodies to replace those that wear out. To be able to do so, their DNA must be copied. A new Weizmann Institute study shows that the molecules in charge of the task of copying DNA -- called DNA polymerases -- are able to improvise in order to achieve this crucially important goal. This new insight into DNA replication and repair could assist in the diagnosis and treatment of diseases in which DNA damage is involved, such as cancer. The surprising findings appear in the December 9 issue of Proceedings of the National Academy of Sciences (PNAS), USA.

DNA polymerases travel along the DNA, producing new "printouts" of it each time the cell divides. In this way, genetic information is passed on in our bodies and from generation to generation. However, problems begin when the DNA is damaged due to factors such as cigarette smoke, radiation and certain reactions in the body. Though our body possesses special enzymes that fix DNA, some damage escapes their notice -- and DNA polymerases must deal with it.


Prof. Zvi Livneh and Ph.D. student Ayelet Maor-Shoshani of the Biological Chemistry Department cut a DNA strand -- from the bacterium E. coli -- and inserted material similar to that which composes crude oil in between both its ends. As expected, the regular DNA polymerase stopped working when it reached the foreign material. Yet to the scientists’ amazement, a specialized DNA polymerase jumped in to rescue the stalled replication process, and continued the copying process, inserting nonexistent genetic components into the "printout" when it encountered the foreign material. This can be compared to a person who forgets some words in a song and makes up new ones to be able to continue to sing.

In other cases, the specialized DNA polymerase skipped over the foreign material or deleted it and thus was able to continue its work as usual. "This shows the remarkable capability of a cell to reproduce," says Livneh. "And it makes one hope that even if extreme types of chemicals are accidentally introduced into our DNA, the body will be able to manage."

True, when DNA polymerase improvises a tune, errors (i.e. mutations) may occur in the new cells’ DNA. Yet Livneh explains that the body cannot feasibly let all cells with damaged DNA die, for there are too many of them. "Only if the DNA contains a very high level of damage will the cell’s machinery ’give up’ and let the cell die."

Prof. Zvi Livneh’s research is supported by the M.D. Moross Institute for Cancer Research, the Levine Institute of Applied Science, the Dr. Josef Cohn Minerva Center for Biomembrane Research, the Dolfi and Lola Ebner Center for Biomedical Research, and the J & R Center for Scientific Research. Prof. Livneh is the incumbent of the Maxwell Ellis Professorial Chair in Biomedical Research.

Alex Smith | EurekAlert!
Further information:
http://www.weizmann.ac.il/

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>