Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Resilience through improvisation

21.01.2004


Our cells are resourceful when it comes to copying DNA, even when the DNA is damaged



Billions of cells divide every day in our bodies to replace those that wear out. To be able to do so, their DNA must be copied. A new Weizmann Institute study shows that the molecules in charge of the task of copying DNA -- called DNA polymerases -- are able to improvise in order to achieve this crucially important goal. This new insight into DNA replication and repair could assist in the diagnosis and treatment of diseases in which DNA damage is involved, such as cancer. The surprising findings appear in the December 9 issue of Proceedings of the National Academy of Sciences (PNAS), USA.

DNA polymerases travel along the DNA, producing new "printouts" of it each time the cell divides. In this way, genetic information is passed on in our bodies and from generation to generation. However, problems begin when the DNA is damaged due to factors such as cigarette smoke, radiation and certain reactions in the body. Though our body possesses special enzymes that fix DNA, some damage escapes their notice -- and DNA polymerases must deal with it.


Prof. Zvi Livneh and Ph.D. student Ayelet Maor-Shoshani of the Biological Chemistry Department cut a DNA strand -- from the bacterium E. coli -- and inserted material similar to that which composes crude oil in between both its ends. As expected, the regular DNA polymerase stopped working when it reached the foreign material. Yet to the scientists’ amazement, a specialized DNA polymerase jumped in to rescue the stalled replication process, and continued the copying process, inserting nonexistent genetic components into the "printout" when it encountered the foreign material. This can be compared to a person who forgets some words in a song and makes up new ones to be able to continue to sing.

In other cases, the specialized DNA polymerase skipped over the foreign material or deleted it and thus was able to continue its work as usual. "This shows the remarkable capability of a cell to reproduce," says Livneh. "And it makes one hope that even if extreme types of chemicals are accidentally introduced into our DNA, the body will be able to manage."

True, when DNA polymerase improvises a tune, errors (i.e. mutations) may occur in the new cells’ DNA. Yet Livneh explains that the body cannot feasibly let all cells with damaged DNA die, for there are too many of them. "Only if the DNA contains a very high level of damage will the cell’s machinery ’give up’ and let the cell die."

Prof. Zvi Livneh’s research is supported by the M.D. Moross Institute for Cancer Research, the Levine Institute of Applied Science, the Dr. Josef Cohn Minerva Center for Biomembrane Research, the Dolfi and Lola Ebner Center for Biomedical Research, and the J & R Center for Scientific Research. Prof. Livneh is the incumbent of the Maxwell Ellis Professorial Chair in Biomedical Research.

Alex Smith | EurekAlert!
Further information:
http://www.weizmann.ac.il/

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>