Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Resilience through improvisation

21.01.2004


Our cells are resourceful when it comes to copying DNA, even when the DNA is damaged



Billions of cells divide every day in our bodies to replace those that wear out. To be able to do so, their DNA must be copied. A new Weizmann Institute study shows that the molecules in charge of the task of copying DNA -- called DNA polymerases -- are able to improvise in order to achieve this crucially important goal. This new insight into DNA replication and repair could assist in the diagnosis and treatment of diseases in which DNA damage is involved, such as cancer. The surprising findings appear in the December 9 issue of Proceedings of the National Academy of Sciences (PNAS), USA.

DNA polymerases travel along the DNA, producing new "printouts" of it each time the cell divides. In this way, genetic information is passed on in our bodies and from generation to generation. However, problems begin when the DNA is damaged due to factors such as cigarette smoke, radiation and certain reactions in the body. Though our body possesses special enzymes that fix DNA, some damage escapes their notice -- and DNA polymerases must deal with it.


Prof. Zvi Livneh and Ph.D. student Ayelet Maor-Shoshani of the Biological Chemistry Department cut a DNA strand -- from the bacterium E. coli -- and inserted material similar to that which composes crude oil in between both its ends. As expected, the regular DNA polymerase stopped working when it reached the foreign material. Yet to the scientists’ amazement, a specialized DNA polymerase jumped in to rescue the stalled replication process, and continued the copying process, inserting nonexistent genetic components into the "printout" when it encountered the foreign material. This can be compared to a person who forgets some words in a song and makes up new ones to be able to continue to sing.

In other cases, the specialized DNA polymerase skipped over the foreign material or deleted it and thus was able to continue its work as usual. "This shows the remarkable capability of a cell to reproduce," says Livneh. "And it makes one hope that even if extreme types of chemicals are accidentally introduced into our DNA, the body will be able to manage."

True, when DNA polymerase improvises a tune, errors (i.e. mutations) may occur in the new cells’ DNA. Yet Livneh explains that the body cannot feasibly let all cells with damaged DNA die, for there are too many of them. "Only if the DNA contains a very high level of damage will the cell’s machinery ’give up’ and let the cell die."

Prof. Zvi Livneh’s research is supported by the M.D. Moross Institute for Cancer Research, the Levine Institute of Applied Science, the Dr. Josef Cohn Minerva Center for Biomembrane Research, the Dolfi and Lola Ebner Center for Biomedical Research, and the J & R Center for Scientific Research. Prof. Livneh is the incumbent of the Maxwell Ellis Professorial Chair in Biomedical Research.

Alex Smith | EurekAlert!
Further information:
http://www.weizmann.ac.il/

More articles from Life Sciences:

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>