Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Primates trade smell for sight


Conventional wisdom says that people deficient in one sense--such as vision or hearing--often acquire heightened acuity in another. These adjustments, of course, take place over the lifetime of an individual. Now it appears, however, that similar adjustments may occur over evolutionary time. Yoav Gilad and his colleagues at the Max Planck Institute for Evolutionary Anthology in Germany and the Weizmann Institute in Israel have found a correlation between the loss of olfactory receptor (OR) genes, which are the molecular basis for the sense of smell, and the acquisition of full trichromatic color vision in primates.

While humans, nonhuman primates, and mice have roughly the same number of OR genes, in humans a high percentage (60%) of these are nonfunctional so-called "pseudogenes", as compared to nonhuman apes which have about 30% pseudogenes, and the mouse which has about 20%. Reliance on the sense of smell, it appears, decreases for animals that develop a dependence on other senses, such as hearing or sight, to survive. In characterizing this high proportion of pseudogenes, Yoav Gilad et al. asked: Is this characteristic of all primates? If not, at what point in primate evolution did the increase occur? Looking at 19 primate species including humans, the team found that Old World monkeys had roughly the same percentage of OR pseudogenes as nonhuman apes, but a much higher percentage than New World monkeys--except for one, the howler monkey. The percentage of OR pseudogenes in the howler monkey was much closer to that seen in the Old World monkeys and apes than in its New World cousins. The sense of smell, it appears, deteriorated independently both in the ape and Old World monkey lineage as well as in the howler monkey lineage. Although Old World monkeys, apes, and the howler monkeys do not share an exclusive common ancestor, they do share another sensory feature: trichromatic color vision.

In trichromatic color vision, three retinal protein pigments, called opsins, absorb various wavelengths of light, which the brain processes to produce full-color images. Apes and Old World monkeys carry three opsin genes, and most New World monkeys carry only two, though females can sometimes have three. Only howler monkeys routinely have three genes occurring in both sexes. Thus, full trichromatic vision evolved twice in primates--once in the common ancestor of apes and Old World monkeys, about 23 million years ago, and once in the howler monkey lineage, about 7 - 16 million years ago. The evolution of color vision, the authors propose, coincided with a growing complement of OR pseudogenes and a deterioration of the sense of smell. Gilad et al. suggest that investigating the types of visual cues required for finding food may shed light on the nature of this connection.

All works published in PLoS Biology are open access. Everything is immediately available without cost to anyone, anywhere--to read, download, redistribute, include in databases, and otherwise use--subject only to the condition that the original authorship is properly attributed. Copyright is retained by the author. The Public Library of Science uses the Creative Commons Attribution License.

Svante Paabo
Max Planck Institute for Evolutionary Anthropology
Leipzig, 04103
ph: 49-341-3550-501

Hemai Parthasarathy | Public Library of Science
Further information:

More articles from Life Sciences:

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht Bioluminescent sensor causes brain cells to glow in the dark
28.10.2016 | Vanderbilt University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>