Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Primates trade smell for sight

20.01.2004


Conventional wisdom says that people deficient in one sense--such as vision or hearing--often acquire heightened acuity in another. These adjustments, of course, take place over the lifetime of an individual. Now it appears, however, that similar adjustments may occur over evolutionary time. Yoav Gilad and his colleagues at the Max Planck Institute for Evolutionary Anthology in Germany and the Weizmann Institute in Israel have found a correlation between the loss of olfactory receptor (OR) genes, which are the molecular basis for the sense of smell, and the acquisition of full trichromatic color vision in primates.




While humans, nonhuman primates, and mice have roughly the same number of OR genes, in humans a high percentage (60%) of these are nonfunctional so-called "pseudogenes", as compared to nonhuman apes which have about 30% pseudogenes, and the mouse which has about 20%. Reliance on the sense of smell, it appears, decreases for animals that develop a dependence on other senses, such as hearing or sight, to survive. In characterizing this high proportion of pseudogenes, Yoav Gilad et al. asked: Is this characteristic of all primates? If not, at what point in primate evolution did the increase occur? Looking at 19 primate species including humans, the team found that Old World monkeys had roughly the same percentage of OR pseudogenes as nonhuman apes, but a much higher percentage than New World monkeys--except for one, the howler monkey. The percentage of OR pseudogenes in the howler monkey was much closer to that seen in the Old World monkeys and apes than in its New World cousins. The sense of smell, it appears, deteriorated independently both in the ape and Old World monkey lineage as well as in the howler monkey lineage. Although Old World monkeys, apes, and the howler monkeys do not share an exclusive common ancestor, they do share another sensory feature: trichromatic color vision.

In trichromatic color vision, three retinal protein pigments, called opsins, absorb various wavelengths of light, which the brain processes to produce full-color images. Apes and Old World monkeys carry three opsin genes, and most New World monkeys carry only two, though females can sometimes have three. Only howler monkeys routinely have three genes occurring in both sexes. Thus, full trichromatic vision evolved twice in primates--once in the common ancestor of apes and Old World monkeys, about 23 million years ago, and once in the howler monkey lineage, about 7 - 16 million years ago. The evolution of color vision, the authors propose, coincided with a growing complement of OR pseudogenes and a deterioration of the sense of smell. Gilad et al. suggest that investigating the types of visual cues required for finding food may shed light on the nature of this connection.




All works published in PLoS Biology are open access. Everything is immediately available without cost to anyone, anywhere--to read, download, redistribute, include in databases, and otherwise use--subject only to the condition that the original authorship is properly attributed. Copyright is retained by the author. The Public Library of Science uses the Creative Commons Attribution License.

CONTACT:
Svante Paabo
Max Planck Institute for Evolutionary Anthropology
Leipzig, 04103
Germany
ph: 49-341-3550-501
paabo@eva.mpg.de

Hemai Parthasarathy | Public Library of Science
Further information:
http://www.plosbiology.org
http://www.publiclibraryofscience.org/

More articles from Life Sciences:

nachricht New type of photosynthesis discovered
17.06.2018 | Imperial College London

nachricht New ID pictures of conducting polymers discover a surprise ABBA fan
17.06.2018 | University of Warwick

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>