Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Evidence That Memories are Consolidated During Sleep


By exposing rats to novel objects and measuring their brain signals, Duke University researchers have detected telltale signal reverberations in wide areas of the brain during sleep that reveal the process of consolidating memories. According to the researchers, their findings offer important evidence that extensive regions of the brain are involved in processing memories during a particular form of sleep, called slow-wave sleep.

The researchers said their findings lay to rest previous doubts that sleep enables consolidation of newly acquired memories, and also establishes roles for both slow-wave sleep and rapid eye movement (REM) sleep in memory consolidation. Slow-wave sleep is a deep dreamless sleep, and REM sleep is associated with dreaming.

The researchers published their findings on Jan. 19, 2004, in the online Public Library of Science ( Senior author on the paper was Miguel Nicolelis, Ph.D., a professor of neurobiology and of biomedical engineering, who is also co-director of the Duke Center for Neuroengineering. Lead author was Sidarta Ribeiro, Ph.D., in Nicolelis’s laboratory. Other co authors were neurobiologists Damien Gervasoni, Ph.D., Ernesto Soares, Yi Zhou, Shih-Chieh Lin, M.D., and Janaina Pantoja; and Michael Lavine, Ph.D., of the Duke Institute of Statistics and Decision Sciences. Their work was supported by the National Institutes of Health and the Pew Latin American Program.

In their study, the researchers placed about 100 infinitesimal recording electrodes in the brains of rats, in four regions involved in memory formation and sensory processing. Those brain areas included the hippocampus, which is widely believed to be involved in memory storage, and areas of the forebrain involved in rodent-specific behaviors. The scientists employed the same neural recording technology that Nicolelis and his colleagues used to enable monkeys to control a robot arm, an achievement announced in October 2003.

The researchers next exposed the rats to four kinds of novel objects in the dark, since largely nocturnal rodents depend on the sense of touch via their whiskers to investigate their environment. The four objects were a golf ball mounted on a spring, a fingernail brush, a stick of wood with pins attached and a tube that dispensed cereal treats.

The researchers recorded and analyzed brain signals from the rats before, during and after their exploration, for several days across natural sleep-wake cycles. Analyses of those signals revealed "reverberations" of distinctive brain wave patterns across all the areas being monitored for up to 48 hours after the novel experience.

According to Ribeiro, "We found that the activity of the brain when the animal is in a familiar environment does not ’stick’ -- that is, the brain keeps moving from one state to another. In contrast, when the animal is exploring a novel environment, that novelty imposes a certain pattern of activity, which lingers in all the areas we studied. Also, we found that this pattern was much more prevalent in slow-wave sleep than in REM sleep."

Conversely, previous studies by Ribeiro and his colleagues demonstrated that the activation of genes able to effect memory consolidation occurs during REM sleep, not slow-wave sleep.

"Based on all these results, we’re proposing that the two stages play separate and complementary roles in memory consolidation," he said. "Periods of slow-wave sleep are very long and produce a recall and probably amplification of memory traces. Ensuing episodes of REM sleep, which are very short, trigger the expression of genes to store what was processed during slow-wave sleep." In principle, this model explains studies such as those by Robert Stickgold and his colleagues at Harvard University, showing that both slow-wave and REM sleep have beneficial effects on memory consolidation, he said. According to Nicolelis, the new experiments remedy shortcomings of previous studies.

"I think that this is another demonstration of the power of the capability of looking at multiple areas of the brain simultaneously," he said. "Previously, investigators have reported the possibility that memories are consolidated during sleep by looking at reverberations, but they only looked in the hippocampus and cerebral cortex. And they only looked for an hour or so. They never looked at several regions of the brain simultaneously, and they never looked for longer periods of time. We’ve now demonstrated that these reverberations occur in a much more distributed manner over the forebrain, and for a very long time period. Importantly, emphasized Nicolelis, the latest findings provide further evidence that the brain behaves as an integrated whole in processing information.

"The brain cannot be seen as just a mosaic of structures, with one performing a particular function and others doing other unrelated functions," he said. "This model has to be discarded, and this paper is one of the first studies to show that the brain has to be considered as a whole. So, while different aspects of memory consolidation may be happening in different structures, the whole brain is participating in this process, and not just the hippocampus or cortex, which was the idea prior to this work," said Nicolelis.

Next, said Nicolelis, the researchers will perform experiments in which they record from more brain structures over longer time periods. They will also genetically manipulate the animals, switching off specific genes to attempt to affect neural circuitry involved in memory storage.

Dennis Meredith | dukemed news
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>