Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transgenic Mosquitoes are Less Fertile Than Their Counterparts in Nature

16.01.2004


Discovery, Published in the Proceedings of the National Academy of Sciences, Flies in the Face of Past Assumptions



A UC Riverside team in the Entomology Department has found that genetically engineered mosquitoes are less fertile and less healthy than mosquitoes that have not been altered.

The discovery, made in the laboratory of biological control extension specialist Mark Hoddle, has been included in the latest issue of the journal Proceedings of the National Academy of Sciences. It is a critical piece of the puzzle in the search for ways to combat mosquito-carried illnesses, such as yellow fever and dengue, because transgenic mosquitoes must be able to compete in the wild in order to combat the illnesses.


Up to now, scientists have debated whether transgenic mosquitoes would have similar or reduced levels of fitness relative to their untransformed counterparts. This work shows that their fitness is dramatically decreased.
Postgraduate researcher Nicola Irvin, under Hoddle’s supervision and in collaboration with Professor Peter Atkinson, was able to quantify the fitness of three different transgenic strains of Aedes aeypti, the mosquito vector of yellow fever and dengue. Irvin found that nearly all aspects of development and reproduction of transgenic mosquitoes was severely impaired when compared to non-engineered mosquitoes of the same type.

For example, in four consecutively laid batches of eggs, non-transformed mosquitoes survived from egg to adulthood between 17 and 64 percent of the time. That percentage was between 0 and 23 for transgenic mosquitoes. The average number of eggs laid by non-engineered mosquitoes ranged between 46 and 90, while for transgenic mosquitoes the range was between 14 and 58.

“These data have major implications for the competitiveness of transgenic mosquitoes with non-transformed wild-types,” said Hoddle. “Analyses indicate that since engineered mosquitoes lay fewer eggs and egg-adult survivorship is lower they will not be able to increase their population mass after release and therefore will be unable to displace disease-carrying mosquitoes.”

Atkinson, the professor who leads a major research program to genetically modify mosquitoes to combat mosquito-borne disease, was not surprised that there was a fitness cost associated with transgenesis, but was surprised with the magnitude of it. “Once we determine the genetic basis of these fitness costs it should be possible to generate competitive mosquitoes that will prevent the transmission of human diseases,” he said.

Atkinson uses a jelly fish “marker gene” that glows under ultraviolet light so he can quickly identify which mosquitoes have successfully incorporated the new genes into their DNA. The next step is to tightly link “effector genes” to them that will block the mosquito’s ability to carry the disease. “Theoretically, once released into the wild they should compete with disease carrying mosquitoes and reduce the incidence of malaria, dengue fever, and other mosquito-borne maladies,” Atkinson said.

Kris Lovekin | UC - Riverside
Further information:
http://www.newsroom.ucr.edu/cgi-bin/display.cgi?id=722

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>