Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transgenic Mosquitoes are Less Fertile Than Their Counterparts in Nature

16.01.2004


Discovery, Published in the Proceedings of the National Academy of Sciences, Flies in the Face of Past Assumptions



A UC Riverside team in the Entomology Department has found that genetically engineered mosquitoes are less fertile and less healthy than mosquitoes that have not been altered.

The discovery, made in the laboratory of biological control extension specialist Mark Hoddle, has been included in the latest issue of the journal Proceedings of the National Academy of Sciences. It is a critical piece of the puzzle in the search for ways to combat mosquito-carried illnesses, such as yellow fever and dengue, because transgenic mosquitoes must be able to compete in the wild in order to combat the illnesses.


Up to now, scientists have debated whether transgenic mosquitoes would have similar or reduced levels of fitness relative to their untransformed counterparts. This work shows that their fitness is dramatically decreased.
Postgraduate researcher Nicola Irvin, under Hoddle’s supervision and in collaboration with Professor Peter Atkinson, was able to quantify the fitness of three different transgenic strains of Aedes aeypti, the mosquito vector of yellow fever and dengue. Irvin found that nearly all aspects of development and reproduction of transgenic mosquitoes was severely impaired when compared to non-engineered mosquitoes of the same type.

For example, in four consecutively laid batches of eggs, non-transformed mosquitoes survived from egg to adulthood between 17 and 64 percent of the time. That percentage was between 0 and 23 for transgenic mosquitoes. The average number of eggs laid by non-engineered mosquitoes ranged between 46 and 90, while for transgenic mosquitoes the range was between 14 and 58.

“These data have major implications for the competitiveness of transgenic mosquitoes with non-transformed wild-types,” said Hoddle. “Analyses indicate that since engineered mosquitoes lay fewer eggs and egg-adult survivorship is lower they will not be able to increase their population mass after release and therefore will be unable to displace disease-carrying mosquitoes.”

Atkinson, the professor who leads a major research program to genetically modify mosquitoes to combat mosquito-borne disease, was not surprised that there was a fitness cost associated with transgenesis, but was surprised with the magnitude of it. “Once we determine the genetic basis of these fitness costs it should be possible to generate competitive mosquitoes that will prevent the transmission of human diseases,” he said.

Atkinson uses a jelly fish “marker gene” that glows under ultraviolet light so he can quickly identify which mosquitoes have successfully incorporated the new genes into their DNA. The next step is to tightly link “effector genes” to them that will block the mosquito’s ability to carry the disease. “Theoretically, once released into the wild they should compete with disease carrying mosquitoes and reduce the incidence of malaria, dengue fever, and other mosquito-borne maladies,” Atkinson said.

Kris Lovekin | UC - Riverside
Further information:
http://www.newsroom.ucr.edu/cgi-bin/display.cgi?id=722

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>