Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Chemists learn to build curved structures with nanoscale building blocks


The natural world is full of curves and three dimensions, but the ability to deliberately and rationally construct such complex structures using nanoscale building blocks has eluded nanotechnologists who are eager to add curved structures to their toolbox.

Now a team of Northwestern University chemists report they have discovered ways to construct nanoscale building blocks that assemble into flat or curved structures with a high level of predictability, depending on the architecture and composition of the building blocks. The results will be published in the Jan. 16 issue of the journal Science.

Using hybrid nanorods consisting of segments of gold and conducting polymers as their building blocks, the researchers created a number of unusual structures, including bundles, sheets and tubes of varying diameters. The extraordinary control that they were able to demonstrate over the process holds promise for building new and powerful drug delivery systems, electronic circuits, catalysts and light-harvesting materials.

"We are trying to mimic life itself," said Chad A. Mirkin, director of Northwestern’s Institute for Nanotechnology, who led the research team. "Much like proteins which must fold into complex structures in order to function properly, we have designed new materials that also form complex structures through the process of self-assembly."

Mirkin and his team made the different structures by varying the diameter of the gold-polymer rods or adjusting the ratio of polymer segment to gold segment in the rods. Both methods should enable researchers to design structures with interesting electronic and optical properties.

"We also discovered that the alumina template we used to build the rods initially is essential in guiding the assembly process," said Mirkin, also George B. Rathmann Professor of Chemistry. "Without the orientation the template provides, the rods do not form bundles, sheets or tubes."

The nanorods were made by the sequential deposition of gold and conducting polymer into the pores of an aluminum template. After the gold-polymer rods were synthesized, the template was dissolved, leaving the rods parallel to one another, gold end to gold end and polymer end to polymer end. The strong interactions between the polymer ends built stress, causing curves to form.

In a subsequent experiment, the researchers observed that self-assembly did not take place when the rods were randomly dispersed in solution.

"The research clearly shows that some unnatural building blocks, such as the gold-polymer rods, need assistance in order to form higher-ordered structures," said Mirkin. "This means that when we work with building blocks that are larger than molecules but smaller than macroscopic objects, we should consider building materials in a completely new way -- by using templates to help guide the assembly process and reduce the large number of assembly pathways potentially available to the building blocks."

In addition to Mirkin, other authors on the Science paper are Sungho Park (lead author), Jung-Hyurk Lim and Sung-Wook Chung, all from Northwestern University. The research was supported by the National Science Foundation and the U.S. Air Force Office of Scientific Research.

Megan Fellman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>