Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sediment samples suggest how plants would fare in hotter, drier future

14.01.2004


Sediment samples dating back thousands of years and taken from under the deep water of West Olaf Lake in Minnesota have revealed an unexpected climate indicator that can be factored into future projections.



In the Jan. 13 issue of the Proceedings of the National Academy of Sciences, scientists at the University of Illinois at Urbana-Champaign report that native C4 plants did not fare well during prolonged periods of severe drought that occurred in the middle Holocene (4,000 to 8,000 years ago).

C4 plants, so designated because of their biochemical pathway of photosynthesis, are generally expected to do well in warmer, drier climates driven by rising levels of carbon dioxide. Elevated carbon dioxide concentrations alone should favor C3 plants, which use another photosynthesis pathway. While the middle Holocene had much lower levels of carbon dioxide, the general climate conditions of that time provide a good model for study, said Feng Sheng Hu, a professor in the plant biology and geology departments at Illinois.


The sediment from West Olaf Lake, which contains residue of plant life, indicates that weedy C3 plants such as Ambrosia (ragweed) adapted well during severe-drought episodes because of their ability to exploit very limited amounts of water available during the growing season, said David M. Nelson, lead author of the paper and a doctoral student in ecology and evolutionary biology working with Hu.

The findings suggest that even C4 plants could face disastrous consequences during long periods of drought, despite the fact that they use water more efficiently than C3 plants, Nelson said. Barren areas unsuitable for agriculture may be much more extensive in the Midwest under warmer, drier conditions predicted for the future, he said.

"Previous studies of past grassland change have been hampered by the fact that pollen grains of grasses cannot be separated into species, making it difficult to understand climate adaptations of C3 and C4 plants during the middle Holocene," Hu said. "This study offers a new details about grassland responses to long periods of severe drought."

The researchers analyzed and compared sediment from West Olaf Lake with samples from Steel Lake, about 75 miles northeast in Hubbard County. Today West Olaf Lake is along the border of the Great Plains and the more hilly deciduous forest of west central Minnesota. Steel Lake is in more geographically diverse terrain that features a dense coniferous forest that was less susceptible to long-term drought.

The middle Holocene C3 and C4 estimates of the two lakes were based on an analysis of carbon isotopes in charcoal particles produced by fires and well preserved in the stratified layers of sediment. Because of the presence of aragonite, a carbonate mineral, at West Olaf Lake, climate data were extracted by using X-ray diffraction. Climate conditions at Steel Lake came from oxygen-18 isotope levels.

"These analyses gave a picture of precipitation and aridity over time," Nelson said. "At West Olaf Lake, during the most severe, long droughts in the early years of the middle Holocene, C4 plants were low in abundance. Only as temperatures cooled and moisture availability rose later in the middle Holocene did C4 plants increase in abundance."

The West Olaf Lake area was rich in weeds such as Ambrosia during the Holocene’s drier middle years. During the period’s early years, severe droughts limited plant productivity, reducing the accumulation of flammable fuels. During the milder, wetter later years of the period, rising C4 plant productivity coincided with an increase of fires.

At Steel Lake, C4 plants were abundant in the middle Holocene. Researchers did not see the inverse relationship between C4 plants and drought, which were not as severe.


The study was funded by a Packard Fellowship in Science and Engineering and by a National Science Foundation grant to Hu. Carbon dating was done under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in California.

Other contributing authors on the paper were Jian Tian, a doctoral student in geology at Illinois, Ivanka Stefanova of the University of Minnesota and Thomas A. Brown of the Lawrence Livermore National Laboratory.

Jim Barlow | UIUC
Further information:
http://www.news.uiuc.edu/news/04/0113minnesota.html
http://www.uiuc.edu/

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>