Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acinetobacter baumannii, the hospital opportunist

12.01.2004


Acinetobacter baumannii is an opportunistic pathogen operating in hospitals creating serious infections such as pneumonia. It principally affects patients who have weakened health and this is why we call it opportunistic. Moreover, the mortality rate from these infections are usually high given, on the one hand, the weakness of the patient and, on the other, A. baumannii is resistant to many antibiotics. Furthermore, once a specific course of treatment is prescribed for A. Baumannii, the pathogen has a great capacity for acquiring resistance to these antibiotics.



To tackle this problem it is essential to observe, in an ongoing manner, the new resistances the bacteria develops, in order to know what kind of antibiotic has to be used to treat patients. In order to carry out these analyses, the gene for the new acquired resistance has to be identified and isolated and also the presence or otherwise of integrons has to be determined.

Integrons


Integrons are chains of genes wherein many of the resistances acquired by the A. baumannii bacteria are found. The pathogen also has other options for their acquisition but it is the integrons that provide the most efficacious way to acquire and transmit the resistances, given that, apart from acquiring resistances, integrons have great mobility and can transfer from one location of the A. baumannii chromosome to another.

This mobility allows them to pass from one strain of the bacteria to another. This means that all the resistances acquired by a strain of A. baumannii can be transmitted to another and the species can thus modify and regenerate itself continuously. Moreover, as it has a promotoros, the bacteria is always activating or expressing all the resistances held in the integron.

Attempting to improve control

Analysing and isolating a number of A. baumannii strains from hospitals, it has been shown that most have integrons. Thus, it is highly probable that A. baumannii becomes resistant to the best antibiotics that exist today and that this resistance is transmitted via integrons. Moreover, A. baumannii strains have been identified that are resistant to the most common antibiotics used today.

If this is confirmed, the mortality rate due to infections created by the bacteria may even be greater than thought to date, given that there is no antibiotic capable of tackling the infection. It should be taken into account that the number of hospital patients affected by infections caused by A. baumannii is not great, but the gravity of the problem lies in the rate of mortality of these cases.

There currently exist methods to genetically distinguish A. baumannii strains from each other, but the aim at the moment is to obtain a method of indicating the presence of integrons and their resistance in these strains. Of course, this method of detection has to be standardised and, at the same time, practical, for its clinical use.

That is to say, the option of the researchers has been to try to improve control with respect to A. baumannii given that there is currently no substitutes for the antibiotics used to date. In order to achieve this improved control, it is essential to detect the infection in time and know if A. baumannii has produced it. The resistances of the strains must also be known and if they have integrons. Once this detailed information is gathered, new systems for the control of infections can be introduced in order keep down the rate of mortality due to A. baumannii.


Contact :
Garazi Andonegi
ELHUYAR Fundazioa
garazi@elhuyar.com
(+34) 943363040

Garazi Andonegi | Basque research
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=383&hizk=I
http://www.ehu.es

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>