Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acinetobacter baumannii, the hospital opportunist

12.01.2004


Acinetobacter baumannii is an opportunistic pathogen operating in hospitals creating serious infections such as pneumonia. It principally affects patients who have weakened health and this is why we call it opportunistic. Moreover, the mortality rate from these infections are usually high given, on the one hand, the weakness of the patient and, on the other, A. baumannii is resistant to many antibiotics. Furthermore, once a specific course of treatment is prescribed for A. Baumannii, the pathogen has a great capacity for acquiring resistance to these antibiotics.



To tackle this problem it is essential to observe, in an ongoing manner, the new resistances the bacteria develops, in order to know what kind of antibiotic has to be used to treat patients. In order to carry out these analyses, the gene for the new acquired resistance has to be identified and isolated and also the presence or otherwise of integrons has to be determined.

Integrons


Integrons are chains of genes wherein many of the resistances acquired by the A. baumannii bacteria are found. The pathogen also has other options for their acquisition but it is the integrons that provide the most efficacious way to acquire and transmit the resistances, given that, apart from acquiring resistances, integrons have great mobility and can transfer from one location of the A. baumannii chromosome to another.

This mobility allows them to pass from one strain of the bacteria to another. This means that all the resistances acquired by a strain of A. baumannii can be transmitted to another and the species can thus modify and regenerate itself continuously. Moreover, as it has a promotoros, the bacteria is always activating or expressing all the resistances held in the integron.

Attempting to improve control

Analysing and isolating a number of A. baumannii strains from hospitals, it has been shown that most have integrons. Thus, it is highly probable that A. baumannii becomes resistant to the best antibiotics that exist today and that this resistance is transmitted via integrons. Moreover, A. baumannii strains have been identified that are resistant to the most common antibiotics used today.

If this is confirmed, the mortality rate due to infections created by the bacteria may even be greater than thought to date, given that there is no antibiotic capable of tackling the infection. It should be taken into account that the number of hospital patients affected by infections caused by A. baumannii is not great, but the gravity of the problem lies in the rate of mortality of these cases.

There currently exist methods to genetically distinguish A. baumannii strains from each other, but the aim at the moment is to obtain a method of indicating the presence of integrons and their resistance in these strains. Of course, this method of detection has to be standardised and, at the same time, practical, for its clinical use.

That is to say, the option of the researchers has been to try to improve control with respect to A. baumannii given that there is currently no substitutes for the antibiotics used to date. In order to achieve this improved control, it is essential to detect the infection in time and know if A. baumannii has produced it. The resistances of the strains must also be known and if they have integrons. Once this detailed information is gathered, new systems for the control of infections can be introduced in order keep down the rate of mortality due to A. baumannii.


Contact :
Garazi Andonegi
ELHUYAR Fundazioa
garazi@elhuyar.com
(+34) 943363040

Garazi Andonegi | Basque research
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=383&hizk=I
http://www.ehu.es

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>