Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Membrane-coated beads make sensitive assay for protein drug candidates

12.01.2004


Microscopic glass beads wearing coats identical to the outer membrane of a cell provide a powerful assay for proteins that bind to cell membranes, such as protein drugs or drug candidates, according to chemists at the University of California, Berkeley, and Lawrence Berkeley National Laboratory (LBNL).


This time-lapse movie depicts clustered beads breaking up and dispersing when protein is added to a solution. The protein binds to receptors in the membrane coating the glass beads, altering the random clustering of beads and making the protein-receptor interaction easy to see.
(Credit: Jay Groves/UC Berkeley)



The membrane-coated beads, complete with receptors that dot the surfaces of real cells, also would make a sensitive detection system for viruses or protein toxins like those produced by cholera, anthrax and tetanus bacteria.

The detection system is extremely sensitive - when proteins latch onto receptors in the membrane, the coated beads disperse like pool balls after a break. This dispersal can easily be seen through a microscope, making robotic screening possible.


"There’s a big demand for membrane-based detection systems by pharmaceutical companies and researchers, but a final bottleneck is always getting a biochemical measurement from the membrane change - detecting the change," said Jay T. Groves, professor of chemistry at UC Berkeley and a faculty scientist in the Physical Bioscience Division of LBNL. "The hard thing about detecting molecules on surfaces is that a surface is intrinsically two-dimensional, and there simply are not many molecules there to detect. For this reason, sophisticated techniques have generally been required to analyze molecular binding events on membrane surfaces.

"With our technique, you get the best of both worlds. We have single molecule interactions that you can see without a sophisticated instrument."

The beads essentially amplify the tiny effects caused by binding of a protein to a receptor, he said. Groves and biophysics graduate student Michael M. Baksh explain their detection scheme in a paper appearing in the Jan. 8 issue of Nature.

Groves is a member of the California Institute for Quantitative Biomedical Research (QB3), a cooperative effort among UC Berkeley, UC San Francisco and UC Santa Cruz to leverage strengths in the physical and biological sciences and engineering to improve human health and the environment.

Such a detection system or assay would be of great interest to the pharmaceutical industry, which needs to screen drug candidates for how well they bind to specific membrane-bound receptors, Groves said. That’s because many drugs as well as infectious disease organisms target memranes.

Because companies typically screen hundreds of thousands of compounds - and occasionally a million of them - at a time, an automated and easy-to-read assay would save time and money.

"Ours is a very high-throughput process that pharmaceutical companies could easily incorporate into their robotic systems for high-throughput screens," Groves said.

Groves has been working on ways to simplify the study of cell membranes, and several years ago came up with a "MembraneChip" - a piece of cell membrane, complete with receptors, attached to a silicon electronic chip that could read out a change in the membrane caused by the binding of a protein with its receptor. Groves patented the device and founded a company, Synamem Corp., that licensed the original technology to look for new drugs that suppress the body’s immune response or fight infection.

"This new technique is a MembraneChip on a particle, and it will probably replace the MembraneChip in many applications because it is very, very high throughput," he said.

Cell membranes consist of two layers of fatty molecules called lipids. The lipid bi-layer protects the cell contents but, just as importantly, provides a sea in which big molecules - receptors - float as entry portals for specific proteins. What Groves and many others have tried to do is find an easy way to determine how well a given protein binds to a membrane-bound receptor. Drug companies, for example, want chemicals that fit like a hand in a glove, to either stimulate or block a receptor.

"There is tremendous interest in measurement and analysis of molecular binding events that occur on cell membrane surfaces," he said. "A substantial majority of therapeutic drug targets reside in the membrane, as do recognition targets used by viruses to infect.

"At present, though, it is very difficult to measure binding interactions at membrane surfaces. Elaborate techniques such as surface plasmon resonance (SPR) or total internal reflection fluorescence (TIRF) must be employed."

After reading about recent research on colloids - microscopic particles that cluster in interesting ways - Groves thought that the degree of aggregation of colloids might make a good indicator of receptor binding affinity, if the colloidal particles were coated with a membrane and receptors.

His experiments showed that a colloidal suspension of membrane-coated beads does react to the binding of a protein and receptor. When no proteins are present, the beads wander randomly through a thin, flat layer of fluid, clustering in short-lived groups of a dozen or more.

"The membranes make the beads slippery, so they don’t stick together but slide around one another," Groves said. "The clumps are just random clusters."

After addition of a protein that fits into a receptor, bead movement is disrupted so that the random clusters shrink in size. The response is not all or nothing, but is more pronounced the more tightly the protein fits into the receptor.

Because proteins that do not fit into a receptor do not elicit this reaction, the system provides a sensitive screening test for presence of specific proteins.

"The colloid is poised near a phase transition, making it very sensitive to single particle interactions too small to measure individually," he said. "The population behavior of the colloid gives us subtle information about membrane interactions not accessible in other ways."

The beads are off-the-shelf glass (silica) spheres 5 microns across, about 1/20th the width of a human hair. The membrane is only 5 nanometers thick, 1,000 times smaller than the diameter of the bead.

In practice, a robotic scanner would need to look at a window only a few millimeters square and calculate the pair-wise distances between the centers of all beads. The shape of this distribution tells how much the beads are aggregating, and thus indicates the binding affinity of a protein to a receptor. Groves himself plans to use the membrane-coated beads to study the dynamics of receptors in cell membranes.

"The science of this technique is intriguing," writes Thomas M. Bayerl in a commentary appearing in the same issue of Nature. Bayerl is at the Physical Institute at the University of Würzburg, Germany. "This work by (the UC Berkeley/LBNL team) may open the door to the automated characterization of a wide range of complex molecular interactions that are at present poorly understood."

A third author of the paper is Michal Jaros, a visiting Fulbright graduate student fellow at UC Berkeley who has since returned to Charles University in Prague in the Czech Republic.

The work was supported by the U.S. Department of Energy and by a Burroughs Wellcome Career Award in the Biomedical Sciences to Groves.

Robert Sanders | UC Berkeley
Further information:
http://www.berkeley.edu/news/media/releases/2004/01/09_bead.shtml

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>