Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New device can help defend against novel biological agents

12.01.2004


Close-up of four-channel microphysiometer; Photo by Daniel Dubois, Vanderbilt University


Dale Taylor, Sven Eklund and David Cliffel, left to right, posed next to the four-channel microphysiometer; Photo by Daniel Dubois, Vanderbilt University.


The ability to analyze and defend against novel biological agents has been strengthened by the development of a new device that can monitor the metabolism of living cells in near real time.

"So far we have been lucky that terrorists have used well-known biological agents like anthrax and sarin gas," says David Cliffel, assistant professor of chemistry at Vanderbilt University, who led the development group working under the auspices of the Vanderbilt Institute for Integrative Biosystems Research and Education. "But how will we respond if one of these groups uses recent advances in genetic engineering to produce an agent that is new and unknown?"

Part of the answer, Cliffel says, is the device he and his colleagues have developed, called a four-channel microphysiometer. It is a modification of a 10-year-old commercial device called the Cytosensor made by the company Molecular Devices that measures changes in acidity in a small chamber holding between 100,000 to 1,000,000 individual cells. Cliffel’s research team has added three additional sensors so that the machine can simultaneously chart minute-by-minute variations in the concentrations of oxygen, glucose, and lactic acid, in addition to pH.



The added capability – reported in the Feb. 1 issue of the journal Analytical Chemistry and now available online – is important because the basic metabolism of a cell involves consuming oxygen and glucose and producing lactic and carbonic acid. As a result, monitoring variations in these four chemicals allows researchers to quickly assess the impact that exposure to different chemicals have on the activity and health of relatively small groups of cells.

"I envision having a microphysiometer with an array of chambers," says Cliffel. "One of them contains heart cells, another contains kidney cells, another nerve cells and so on. Then, when an unknown agent is pumped into all these chambers, we quickly will be able to determine exactly which part of the body it attacks and the response of the affected cells will provide us with important clues about the manner of its attack."

Because of its potential application for bioterrorism and chemical and biological warfare, the development of the device has been funded by the Defense Advance Research Projects Agency. But the microphysiometer also has important potential applications in detecting and assessing the toxicity of environmental pollutants. It also has many possible uses in basic biological research, its developers point out. The microphysiometer consists of a series of reservoirs, switches, rotary pumps and tiny chambers made from two thin membrane sheets that contain the cell colonies. The original unit also included a single sensor that measured changes in acidity (pH) in the extracellular liquid.

"Over the years, the Cytosensor has been used in a number of studies involving changes in pH," says Cliffel. "But its usefulness was limited because it could only measure a single variable. We realized that analytical chemists had recently developed new techniques that would allow us to simultaneously measure variations in several different key compounds."

Using these techniques, Cliffel’s interdisciplinary research team – chemistry post-doctoral assistants Sven Eklund and Dale Taylor working with senior research associate Eugene Kozlov and research professor Ales Prokop from chemical engineering – developed the three additional sensors out of specially coated electrodes. They attached these to another commercial device that has recently come on the market, called a multipotentiostat, that allowed them to take simultaneous readings from the sensors.

One of the biggest problems they had with these modifications was due to the fact that one of the devices was designed to be controlled by a Windows computer and the other by a Macintosh. "In the beginning, there was a tremendous amount of cross talk between the two computers that we had to eliminate," Eklund says.

The researchers tested the modified device with several different toxic agents and two cell types.

In one test they added fluoride to Chinese hamster ovary cells. Fluoride blocks cells’ ability to convert glucose into ATP, the chemical that cells use as an energy source. Their measurements showed that the lactate concentration and acidification rate dropped rapidly as the cell slowed its production while oxygen and glucose concentrations rose as the cell consumption slowed.

"We could see the cells basically go into hibernation," says Cliffel. "Then, when we flushed out the fluoride, we could see them start up again."

They ran similar tests with two other known metabolic poisons, antimycin A and 2,4-dinitrophenol, and a type of cell that produces connective tissue called a fibroblast and got similar results.

Last year, the Vanderbilt researchers upgraded a Cytosensor at the Edgewood Chemical Biological Center at the Aberdeen Proving Ground in Maryland. Since then their ECBC collaborators have been using the device to study cell response to a number of different chemical and biological agents.

Since submitting the recent paper, Cliffel’s group has also successfully tested the device with two pesticides, parathion and paraoxon, and two common pollutants, the gas additive MTBE and hexachromium, the pollutant that Erin Brochovich made famous.

A paper that provides detailed instructions on how to modify the Cytosensor and multipotentiostat to make a four-channel microphysiometer has been accepted for publication by Humana Press and is scheduled to appear later in the year.

David F. Salisbury | EurekAlert!
Further information:
http://www.exploration.vanderbilt.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>