Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteriophage genomics approach to antimicrobial drug discovery published in Nature Biotechnology

12.01.2004


Identifying the targets that bacterial viruses, or phages, use to halt bacterial growth and then screening against those targets for small molecule inhibitors that attack the same targets provides a unique platform for the discovery of novel antibiotics. Researchers from Montreal-based PhageTech, Inc. describe in the February issue of Nature Biotechnology this novel method for discovering new classes of antibiotics. The article is available on-line today at www.nature.com/nbt/.



"Over the course of evolution, the multitudes of phages that attack bacteria have developed unique proteins that bind to and inactivate (or redirect) critical cellular targets within their prey," said Jing Liu, Ph.D., corresponding author of the publication. "This binding shuts off key metabolic processes in the bacteria, diverting those organisms from their own growth and reproduction to the production of new phage progeny. We believe these phage-identified bacterial "weak spots" will provide useful screening targets for discovering the sorts of truly novel antibiotics needed to combat growing antibiotic resistance."

The publication’s authors used a high-throughput phage genomics strategy to identify novel 31 novel polypeptide families that inhibit Staphylococcus aureus growth when expressed in the bacteria. Several of these were found to attack targets essential for bacterial DNA replication or transcription. They then employed the interaction between a prototypic phage peptide, ORF104 of phage 77, and its bacterial target, DnaI, to screen for small molecule inhibitors. Using this strategy, the researchers found several novel compounds that inhibited both bacterial growth and DNA synthesis.


"This strategy offers several benefits as a novel approach to antimicrobial drug discovery," said Jinzi J. Wu, M.D., Ph.D., PhageTech vice president, R&D - biology. "First, the bacterial targets identified in this manner are evolutionarily validated as important to bacterial growth and potentially susceptible to inactivation by small molecule drugs. This allows us to quickly pinpoint the most promising anti-microbial targets from among thousands of possible candidates. Second, this approach provides a ready-to-use screening assay based on inhibition of interactions between a phage peptide and its bacterial target."

"The fight against growing bacterial resistance requires new classes of antibiotics against novel targets. Our strategy of screening for compounds that address the same antibacterial targets attacked by phages is a very good way of identifying novel compounds against many different bacterial species," concluded Dr Wu.

Applying its novel antibiotic discovery platform, PhageTech has identified eight novel antimicrobial targets against which the company is screening chemical libraries and applying medicinal chemistry to further refine and evaluate those inhibitors. PhageTech has also continued to expand its phage genomics platform from Staphylococcus aureus to other bacterial pathogens including Streptococcus pneumoniae and Pseudomonas aeruginosa.


About PhageTech

PhageTech is a private, venture-backed biopharmaceutical company focused on the discovery and development of new classes of antibiotic drugs for novel antibacterial targets, based on its world-leading efforts in phage genomics. By unraveling the genetic code of phages, or bacterial viruses, PhageTech identified antimicrobial proteins used by the phages to kill or stop the growth of bacteria, as well as the specific bacterial targets with which those proteins interact. The company then screens these bacterial targets to identify novel small molecule drugs that attack the same targets to achieve bacterial growth inhibitory effects. PhageTech is headquartered in Montreal, Québec. For more information on PhageTech, please contact Michel Harpin, director of business development at 514-332-1008.

Contact:

Michel Harpin
Director, Business Development
PhageTech
514-332-1008
mharpin@phagetech.com

Joan Kureczka
Kureczka/Martin Associates
415-821-2413
Jkureczka@aol.com

Joan Kureczka | EurekAlert!
Further information:
http://www.nature.com/nbt/
http://www.phagetech.com

More articles from Life Sciences:

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

nachricht Self-assembled nanostructures hit their target
23.09.2016 | King Abdullah University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>