Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteriophage genomics approach to antimicrobial drug discovery published in Nature Biotechnology

12.01.2004


Identifying the targets that bacterial viruses, or phages, use to halt bacterial growth and then screening against those targets for small molecule inhibitors that attack the same targets provides a unique platform for the discovery of novel antibiotics. Researchers from Montreal-based PhageTech, Inc. describe in the February issue of Nature Biotechnology this novel method for discovering new classes of antibiotics. The article is available on-line today at www.nature.com/nbt/.



"Over the course of evolution, the multitudes of phages that attack bacteria have developed unique proteins that bind to and inactivate (or redirect) critical cellular targets within their prey," said Jing Liu, Ph.D., corresponding author of the publication. "This binding shuts off key metabolic processes in the bacteria, diverting those organisms from their own growth and reproduction to the production of new phage progeny. We believe these phage-identified bacterial "weak spots" will provide useful screening targets for discovering the sorts of truly novel antibiotics needed to combat growing antibiotic resistance."

The publication’s authors used a high-throughput phage genomics strategy to identify novel 31 novel polypeptide families that inhibit Staphylococcus aureus growth when expressed in the bacteria. Several of these were found to attack targets essential for bacterial DNA replication or transcription. They then employed the interaction between a prototypic phage peptide, ORF104 of phage 77, and its bacterial target, DnaI, to screen for small molecule inhibitors. Using this strategy, the researchers found several novel compounds that inhibited both bacterial growth and DNA synthesis.


"This strategy offers several benefits as a novel approach to antimicrobial drug discovery," said Jinzi J. Wu, M.D., Ph.D., PhageTech vice president, R&D - biology. "First, the bacterial targets identified in this manner are evolutionarily validated as important to bacterial growth and potentially susceptible to inactivation by small molecule drugs. This allows us to quickly pinpoint the most promising anti-microbial targets from among thousands of possible candidates. Second, this approach provides a ready-to-use screening assay based on inhibition of interactions between a phage peptide and its bacterial target."

"The fight against growing bacterial resistance requires new classes of antibiotics against novel targets. Our strategy of screening for compounds that address the same antibacterial targets attacked by phages is a very good way of identifying novel compounds against many different bacterial species," concluded Dr Wu.

Applying its novel antibiotic discovery platform, PhageTech has identified eight novel antimicrobial targets against which the company is screening chemical libraries and applying medicinal chemistry to further refine and evaluate those inhibitors. PhageTech has also continued to expand its phage genomics platform from Staphylococcus aureus to other bacterial pathogens including Streptococcus pneumoniae and Pseudomonas aeruginosa.


About PhageTech

PhageTech is a private, venture-backed biopharmaceutical company focused on the discovery and development of new classes of antibiotic drugs for novel antibacterial targets, based on its world-leading efforts in phage genomics. By unraveling the genetic code of phages, or bacterial viruses, PhageTech identified antimicrobial proteins used by the phages to kill or stop the growth of bacteria, as well as the specific bacterial targets with which those proteins interact. The company then screens these bacterial targets to identify novel small molecule drugs that attack the same targets to achieve bacterial growth inhibitory effects. PhageTech is headquartered in Montreal, Québec. For more information on PhageTech, please contact Michel Harpin, director of business development at 514-332-1008.

Contact:

Michel Harpin
Director, Business Development
PhageTech
514-332-1008
mharpin@phagetech.com

Joan Kureczka
Kureczka/Martin Associates
415-821-2413
Jkureczka@aol.com

Joan Kureczka | EurekAlert!
Further information:
http://www.nature.com/nbt/
http://www.phagetech.com

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>