Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteriophage genomics approach to antimicrobial drug discovery published in Nature Biotechnology

12.01.2004


Identifying the targets that bacterial viruses, or phages, use to halt bacterial growth and then screening against those targets for small molecule inhibitors that attack the same targets provides a unique platform for the discovery of novel antibiotics. Researchers from Montreal-based PhageTech, Inc. describe in the February issue of Nature Biotechnology this novel method for discovering new classes of antibiotics. The article is available on-line today at www.nature.com/nbt/.



"Over the course of evolution, the multitudes of phages that attack bacteria have developed unique proteins that bind to and inactivate (or redirect) critical cellular targets within their prey," said Jing Liu, Ph.D., corresponding author of the publication. "This binding shuts off key metabolic processes in the bacteria, diverting those organisms from their own growth and reproduction to the production of new phage progeny. We believe these phage-identified bacterial "weak spots" will provide useful screening targets for discovering the sorts of truly novel antibiotics needed to combat growing antibiotic resistance."

The publication’s authors used a high-throughput phage genomics strategy to identify novel 31 novel polypeptide families that inhibit Staphylococcus aureus growth when expressed in the bacteria. Several of these were found to attack targets essential for bacterial DNA replication or transcription. They then employed the interaction between a prototypic phage peptide, ORF104 of phage 77, and its bacterial target, DnaI, to screen for small molecule inhibitors. Using this strategy, the researchers found several novel compounds that inhibited both bacterial growth and DNA synthesis.


"This strategy offers several benefits as a novel approach to antimicrobial drug discovery," said Jinzi J. Wu, M.D., Ph.D., PhageTech vice president, R&D - biology. "First, the bacterial targets identified in this manner are evolutionarily validated as important to bacterial growth and potentially susceptible to inactivation by small molecule drugs. This allows us to quickly pinpoint the most promising anti-microbial targets from among thousands of possible candidates. Second, this approach provides a ready-to-use screening assay based on inhibition of interactions between a phage peptide and its bacterial target."

"The fight against growing bacterial resistance requires new classes of antibiotics against novel targets. Our strategy of screening for compounds that address the same antibacterial targets attacked by phages is a very good way of identifying novel compounds against many different bacterial species," concluded Dr Wu.

Applying its novel antibiotic discovery platform, PhageTech has identified eight novel antimicrobial targets against which the company is screening chemical libraries and applying medicinal chemistry to further refine and evaluate those inhibitors. PhageTech has also continued to expand its phage genomics platform from Staphylococcus aureus to other bacterial pathogens including Streptococcus pneumoniae and Pseudomonas aeruginosa.


About PhageTech

PhageTech is a private, venture-backed biopharmaceutical company focused on the discovery and development of new classes of antibiotic drugs for novel antibacterial targets, based on its world-leading efforts in phage genomics. By unraveling the genetic code of phages, or bacterial viruses, PhageTech identified antimicrobial proteins used by the phages to kill or stop the growth of bacteria, as well as the specific bacterial targets with which those proteins interact. The company then screens these bacterial targets to identify novel small molecule drugs that attack the same targets to achieve bacterial growth inhibitory effects. PhageTech is headquartered in Montreal, Québec. For more information on PhageTech, please contact Michel Harpin, director of business development at 514-332-1008.

Contact:

Michel Harpin
Director, Business Development
PhageTech
514-332-1008
mharpin@phagetech.com

Joan Kureczka
Kureczka/Martin Associates
415-821-2413
Jkureczka@aol.com

Joan Kureczka | EurekAlert!
Further information:
http://www.nature.com/nbt/
http://www.phagetech.com

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>