Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover New Gene Essential For The Development Of Normal Brain Connections Resulting From Sensory Input

09.01.2004


Biologists at the University of California, San Diego and the Johns Hopkins University have discovered a gene that plays a key role in initiating changes in the brain in response to sensory experience, a finding that may provide insight into certain types of learning disorders.


Images of neurons from normal mice (left) and from mice lacking CREST gene (right) Credit: Anirvan Ghosh



After birth, learning and experience change the architecture of the brain dramatically. The structure of individual neurons, or nerve cells, changes during learning to accommodate new connections between neurons. Neuroscientists believe these structural changes are initiated when neurons are activated, causing calcium ions to flow into cells and alter the activity of genes.

In a paper featured on the cover of the January 9th issue of the journal Science, biologists at UCSD and the Johns Hopkins University medical school report the discovery of the first gene, CREST, known to mediate these changes in the structure of neurons in response to calcium.


“We discovered the gene CREST using a new method we developed to identify genes that are switched on in the presence of calcium,” says Anirvan Ghosh, a professor of biology at UCSD who headed the study. “The brains of mice lacking CREST appear normal at birth, but do not develop normally in response to sensory experience after birth. This parallels some learning disorders in humans where the child appears normal initially, but by the age of two or three years it becomes clear that there are failures in the acquisition of new knowledge.”

Neurons from normal mice develop a highly branched tree-like structure. In fact, much of the growth of the brain that occurs soon after birth is the development and branching of dendrites—the part of a nerve cell that receives input from other neurons. Thus, this branching allows neurons to form many different synapses, or connections, with many other neurons, permitting much cross talk between them. Neurons taken from mice lacking the CREST gene are more linear, like a plant shoot.

In addition, when individual neurons kept alive in a Petri dish are stimulated with calcium ions, they respond by developing highly branched dendrites, but neurons taken from mice lacking CREST fail to branch in response to calcium.

“CREST is the first example of a transcription factor—a protein that turns genes on and off—that appears to be specifically required for the development of brain neurons after birth," explains Ghosh, who conducted the study at his former laboratory at Johns Hopkins.

His new laboratory at UCSD is currently working to determine what gene is targeted by CREST. Ghosh suspects the CREST gene might be turning on the production of chemicals called growth factors, for the stimulatory effect they have on cell development.

The CREST protein produced by that gene is made in several regions of the brain immediately after birth. In adults, the protein is produced in a region of the brain known as the hippocampus, which plays an important role in learning and memory. Because of this, Ghosh suspects that CREST may be necessary for the storage of new memories and the ability to learn. His laboratory is currently developing mice in which CREST expression is normal throughout most of development, so the brain develops normally, but then shuts off in the hippocampus when the mice reach adulthood. In this way, the researchers can test the specific role of CREST in learning and memory in adults.

“Humans also have CREST, and the CREST gene sequence is highly similar between mice and humans,” says Ghosh. “If it turns out that CREST plays a role in learning and memory in the mouse, then it is very likely it also plays a similar role in humans.”

The other researchers involved in the study are Hiroyuki Aizawa, Shu-Ching Hu, Kathryn Bobb, Karthik Balakriashnan, Inga Gurevich and Mitra Cowan. The study was supported by the National Institutes of Health, the March of Dimes Birth Defects Foundation, the Klingenstein Foundation, Merck and the Uehara Memorial Foundation.


Media Contact: Sherry Seethaler (858) 534-4656
Comment: Anirvan Ghosh (858) 822-4142

Sherry Seethaler | UCSD
Further information:
http://ucsdnews.ucsd.edu/newsrel/science/screst.asp

More articles from Life Sciences:

nachricht Synthetic nanoparticles achieve the complexity of protein molecules
24.01.2017 | Carnegie Mellon University

nachricht Immune Defense Without Collateral Damage
24.01.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>