Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo researchers observe genetic fusion of human, animal cells -may help explain origin of AIDS

09.01.2004


Mayo Clinic genomics researchers are the first to demonstrate that mixing of genetic material can occur naturally, in a living body. The researchers have discovered conditions in which pig cells and human cells can fuse together in the body to yield hybrid cells that contain genetic material from both species and carry a swine virus similar to HIV (the virus that causes AIDS) that can infect normal human cells.



While the research does not answer the question of whether this infection can cause actual disease in humans, it does provide scientists with a new way to understand how viral infections can pass from animals to humans.

"What we found was completely unexpected," says Jeffrey Platt, M.D., director of the Mayo Clinic Transplantation Biology Program. "This observation helps explain how a retrovirus can jump from one species to another -- and that may speed discovery about the origin of diseases such as AIDS and SARS. The discovery also may help explain how cells in the circulation may become part of the solid tissue." The Mayo Clinic research appears in the online Express edition of the FASEB Journal. (www.fasebj.org) published by the Federation of American Societies for Experimental Biology. The print article will appear in the March issue of the journal (volume 18, issue 3).


Known as "zoonosis or zoonotic infection," the movement of an infectious agent between animals and humans is of intense interest to those who study public health, infectious diseases, immunology and transplantation. Some viruses, such as influenza, are well known to pass from one species to another. Other viruses do not appear to easily cross species -- and yet do so under rare, unknown circumstances.

Scientists want to know how and why viruses cross species because zoonosis may underlie some of the most devastating diseases. For example, researchers have long believed the HIV virus that causes AIDS in humans originated in wild primate populations and crossed into humans a few decades ago. More recently, scientists have thought that the coronavirus responsible for SARS crossed into humans from wild animals such as the palm civet cats of Asia.

A Possible New Model for Understanding AIDS

In the research reported today, Mayo Clinic investigators implanted human blood stem cells into fetal pigs. The pigs look and behave like normal pigs. But cellular analysis shows they have some human blood cells, as well as some cells that are hybrids -- part human, part pig -- in their blood, and in some of their organs. Molecular examination shows the hybrid cells have one nucleus with genetic materials from both the human and the pig. Importantly, the hybrid cells were found to have the porcine endogenous retrovirus, a distant cousin of HIV, and to be able to transmit that virus to uninfected human cells.

Background: What Led to This Research?

The Mayo Clinic research team has long been interested -- and is a world leader -- in xenotransplantation (ZEE-no-transplantation). This is an experimental field within transplant biology in which specially bred and raised pigs might eventually become donors for humans to meet the drastic shortage of suitable donor organs. Worldwide, thousands of people suffer failure of such organs as the liver, kidney, heart, lung and pancreas and require transplants -- but face death due to shortage of suitable donor organs. Xenotransplantation is just one experimental avenue being explored as a way to meet this shortage.

One central concern of investigators is the potential for zoonotic transmission of disease when an animal organ is surgically implanted into a human. One virus of concern is the porcine endogenous retrovirus, which is present in all pigs. The current research provided two important discoveries: the virus can pass to human cells in the body and it can be infectious. But whether it can actually cause disease in humans is not yet known.

Says Dr. Platt, "Perhaps this model or one like it can help to answer this question. And perhaps similar models can be used to identify other viruses of concern before outbreaks occur in humans."

The Next Step

The experiment has been repeated a number of times, but it needs to be further scrutinized. "We’re really working hard to figure out how it happened, and what implications it might have beyond the transmission of the one virus we studied," Dr. Platt says.

The research was conducted in the Transplantation Biology Program at Mayo Clinic. In addition to Dr. Platt, the research team consisted of Brenda Ogle, Ph.D., first author of the article, and Marilia Cascalho, M.D., Ph.D., who was in charge of genetics in the study.


Mayo Clinic conducts research in medical genomics in order to improve patient care. Its scientists and clinical investigators strive to turn laboratory discoveries into beneficial therapies as quickly as possible.

Bob Nellis | EurekAlert!
Further information:
http://www.mayo.edu/

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>