Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo researchers observe genetic fusion of human, animal cells -may help explain origin of AIDS

09.01.2004


Mayo Clinic genomics researchers are the first to demonstrate that mixing of genetic material can occur naturally, in a living body. The researchers have discovered conditions in which pig cells and human cells can fuse together in the body to yield hybrid cells that contain genetic material from both species and carry a swine virus similar to HIV (the virus that causes AIDS) that can infect normal human cells.



While the research does not answer the question of whether this infection can cause actual disease in humans, it does provide scientists with a new way to understand how viral infections can pass from animals to humans.

"What we found was completely unexpected," says Jeffrey Platt, M.D., director of the Mayo Clinic Transplantation Biology Program. "This observation helps explain how a retrovirus can jump from one species to another -- and that may speed discovery about the origin of diseases such as AIDS and SARS. The discovery also may help explain how cells in the circulation may become part of the solid tissue." The Mayo Clinic research appears in the online Express edition of the FASEB Journal. (www.fasebj.org) published by the Federation of American Societies for Experimental Biology. The print article will appear in the March issue of the journal (volume 18, issue 3).


Known as "zoonosis or zoonotic infection," the movement of an infectious agent between animals and humans is of intense interest to those who study public health, infectious diseases, immunology and transplantation. Some viruses, such as influenza, are well known to pass from one species to another. Other viruses do not appear to easily cross species -- and yet do so under rare, unknown circumstances.

Scientists want to know how and why viruses cross species because zoonosis may underlie some of the most devastating diseases. For example, researchers have long believed the HIV virus that causes AIDS in humans originated in wild primate populations and crossed into humans a few decades ago. More recently, scientists have thought that the coronavirus responsible for SARS crossed into humans from wild animals such as the palm civet cats of Asia.

A Possible New Model for Understanding AIDS

In the research reported today, Mayo Clinic investigators implanted human blood stem cells into fetal pigs. The pigs look and behave like normal pigs. But cellular analysis shows they have some human blood cells, as well as some cells that are hybrids -- part human, part pig -- in their blood, and in some of their organs. Molecular examination shows the hybrid cells have one nucleus with genetic materials from both the human and the pig. Importantly, the hybrid cells were found to have the porcine endogenous retrovirus, a distant cousin of HIV, and to be able to transmit that virus to uninfected human cells.

Background: What Led to This Research?

The Mayo Clinic research team has long been interested -- and is a world leader -- in xenotransplantation (ZEE-no-transplantation). This is an experimental field within transplant biology in which specially bred and raised pigs might eventually become donors for humans to meet the drastic shortage of suitable donor organs. Worldwide, thousands of people suffer failure of such organs as the liver, kidney, heart, lung and pancreas and require transplants -- but face death due to shortage of suitable donor organs. Xenotransplantation is just one experimental avenue being explored as a way to meet this shortage.

One central concern of investigators is the potential for zoonotic transmission of disease when an animal organ is surgically implanted into a human. One virus of concern is the porcine endogenous retrovirus, which is present in all pigs. The current research provided two important discoveries: the virus can pass to human cells in the body and it can be infectious. But whether it can actually cause disease in humans is not yet known.

Says Dr. Platt, "Perhaps this model or one like it can help to answer this question. And perhaps similar models can be used to identify other viruses of concern before outbreaks occur in humans."

The Next Step

The experiment has been repeated a number of times, but it needs to be further scrutinized. "We’re really working hard to figure out how it happened, and what implications it might have beyond the transmission of the one virus we studied," Dr. Platt says.

The research was conducted in the Transplantation Biology Program at Mayo Clinic. In addition to Dr. Platt, the research team consisted of Brenda Ogle, Ph.D., first author of the article, and Marilia Cascalho, M.D., Ph.D., who was in charge of genetics in the study.


Mayo Clinic conducts research in medical genomics in order to improve patient care. Its scientists and clinical investigators strive to turn laboratory discoveries into beneficial therapies as quickly as possible.

Bob Nellis | EurekAlert!
Further information:
http://www.mayo.edu/

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>